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On-Line Data Intensive Applications

Scaling
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Monoliths (>100 ms SLO)—> Microservices (sub-ms SLO)

mpact of Threading-Induced Overhead
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Threadlng Lock contention Thread wakeups Spurious context switch
overheads

Impact: Minor for monoliths & major for microservices

Exa m p | e: Microservice A Microservice A

Spurious
context switch 20% latency

100 ps penalty!
response latency 20 ps

Threading Impact on Mid-Tier
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Mid-Tier: Heavily impacted by threading ...,
* Server & client

* Fans queries to many leaves

* RPClayer interactions dominate compute

Contributions

* Ataxonomy of threading models
o Structured understanding of threading implications
» Reveals tail inflection points across load
» Peak load-sustaining model is subpar at low load
* ulune:
o Uses tail inflection insights to optimize tail latency
o Tunes model & thread pool size across load
o Simple interface: Abstracts threading from RPC code

Taxonomy of Threading Models

Front-End Mid-Tier Leaf

O NW socket

Poll/Block

In-line/Dispatch

Threading dimensions:

e Block vs. Poll Request
* In-line vs. Dispatch

* Sync. vs. Async.

Synchronous/
Asynchronous

Taxonomy Characterization
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No single threading model works best at all loads

MTune: Automatic Load Adaptation

Abstracts threading boiler-plate code from RPC code

App layer | Microservice functionality: ProcessReq(), InvokelLeaf(), FinalizeResp()

ML - Tune automatic load adaptation system

Network layer [RNESIEVE

System design: offline training + run-time adaptation

Offline Request rate Best TM Ideal no. of threads
training
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Result: pyTune Under Steady-State Load
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<5% mean overhead

20 50 100 1K 8K 14K

99th percentile tail latency (ms)

Load (Queries Per Second)

* uTune converges to best threading model and
thread pool size to improve tail latency by up to
1.9x over static peak load-sustaining threading
model with < 5% mean overhead
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