4 1GO BLUE

nTune: Auto-Tuned Threading for OLDI Microservices

Akshitha Sriraman, Thomas F. Wenisch
University of Michigan

On-Line Data Intensive Applications

Scaling

|
)[R

Monoliths (>100 ms SLO)—> Microservices (sub-ms SLO)

mpact of Threading-Induced Overhead

uer=] P
*>
E’ .\‘. Y= e

Threadlng Lock contention Thread wakeups Spurious context switch
overheads

Impact: Minor for monoliths & major for microservices

Exa m p | e: Microservice A Microservice A

Spurious
context switch 20% latency

100 ps penalty!
response latency 20 ps

Threading Impact on Mid-Tier

Front-End Microserver Mid-Tier Microserver

. .<Leaf Microserver 1

Mid-Tier: Heavily impacted by threading ...,
* Server & client

* Fans queries to many leaves

* RPClayer interactions dominate compute

Contributions

* Ataxonomy of threading models
o Structured understanding of threading implications
» Reveals tail inflection points across load
» Peak load-sustaining model is subpar at low load
* ulune:
o Uses tail inflection insights to optimize tail latency
o Tunes model & thread pool size across load
o Simple interface: Abstracts threading from RPC code

Taxonomy of Threading Models

Front-End Mid-Tier Leaf

O NW socket

Poll/Block

In-line/Dispatch

Threading dimensions:

e Block vs. Poll Request
* In-line vs. Dispatch

* Sync. vs. Async.

Synchronous/
Asynchronous

Taxonomy Characterization

A ®

! saturation .>A<
G [T PO
S
= ® oo
£ 15 1 X In-Line Block
= T ? X x %. ® |In-Line Poll
©
2 1 ® ¢ ‘ M Dispatch Block
o .
S o5 | A Dispatch Poll
<
< HDSearch: Sync.
Q0 T T Y
()}

10 100 1000 10000

Load (Queries Per Second)

No single threading model works best at all loads

MTune: Automatic Load Adaptation

Abstracts threading boiler-plate code from RPC code

App layer | Microservice functionality: ProcessReq(), InvokelLeaf(), FinalizeResp()

ML - Tune automatic load adaptation system

Network layer [RNESIEVE

System design: offline training + run-time adaptation

Offline Request rate Best TM Ideal no. of threads
training
0 - X 0-128 QPS SIP In-line: one
f\ Create piecewise
linear model - . :
4096 - 8192 QPS SDB NW poller: one, Workers: many
(eg. 50), Resp. threads: many
Online:
Circular event buffer \1,
Request . ProcessRequest()
from _| L_.—> Ser)d to __Switch to Request
front-end | gRPC switching best TM & to leaf
logic thread pool InvokeLeaf()
sizes
Request rate
compute Response from leaf
< Response to front-end J FinalizeResponse() [&-<=:=:=-=:=:=:mm-

Result: pyTune Under Steady-State Load

B nlinePpoll [DispatchPoll [Dispatch Block [Haque ‘15 [Abdelzaher ‘99 [uTune

A saturation oo 000.17

<5% mean overhead

20 50 100 1K 8K 14K

99th percentile tail latency (ms)

Load (Queries Per Second)

* uTune converges to best threading model and
thread pool size to improve tail latency by up to
1.9x over static peak load-sustaining threading
model with < 5% mean overhead

Acknowledgement

LA
\@\?‘C'&\

Ko (intel)

'S

\ ada

Applications Driving Architectures

