
•  Comprehensive	 characteriza1on	 of	 Facebook’s	 microservices	
q  System-‐level	 &	 architectural	 bo=lenecks	
	 	 	 	 	 Reveals	 enormous	 bo=leneck	 diversity	 across	 microservices	

•  Concept	 of	 “soA”	 server	 SKUs	 	
q  Tuning	 coarse-‐grained	 OS	 &	 hardware	 configura1on	 knobs	

•  µSKU	
q  Automates	 soA-‐SKU	 search	 &	 configura1on	 via	 produc1on	 A/B	 tests	
q  Deploys	 soA	 SKUs	 on	 produc1on	 microservices	

	

So#SKU:	 Op*mizing	 Server	 Architectures	 for	 Microservice	
Diversity	 @Scale	

Akshitha Sriraman✣▴, Abhishek Dhano2a▴, Thomas F. Wenisch✣

University of Michigan✣, Facebook ▴

Rapid Increase in Modern Web Services

Are Custom Platforms Always Needed?

Contributions

Facebook µServices’ Characterization

µSKU: Soft SKU Design & Deployment

Performance of Commodity Servers

Client	

Web	

Feed	

Ads	

Cache	 ?	

Stringent	 SLOs	 +	 	
Moore’s	 law	 decline	

Rapid	 increase	 in	 µservices	 -‐>	 greater	 need	 for	 custom	 hardware	

Web	 services	 Microservices	

Customized	 hardware	

Customized	 plaTorms	 -‐>	 expensive	

Data	 centers	 prefer	 hardware	 	
resource	 fungibility	 	

Low	 tes1ng	 	
overhead	

Procurement	
@scale	 ?	

Dire	 need	 for	 limited	 CPU	 SKUs	 that	 support	 a	 variety	 of	 µservices	

Web	 Feed	

Ads	 Cache	

How performant is commodity
hardware for these µservices?

Use	 commodity	 hardware	 for	
	 procurement	 efficiency	 &	 scalability?	

Are there common boElenecks
that can inspire future SKUs?

Key	 FB	 µservices	 occupy	 a	 	
large	 por1on	 of	 the	 data	 center	

~7.2%	 perf. boost on produc*on µservices + no	 extra	 hardware	

μService	 Throughput	
(QPS)	

Response	
latency	 Pathlength	

Web	 O(100)	 O(ms)	 O(106)	
Feed1	 O(1000)	 O(ms)	 O(109)	
Feed2	 O(10)	 O(s)	 O(109)	
Ads1	 O(10)	 O(ms)	 O(109)	
Ads2	 O(100)	 O(ms)	 O(109)	
Cache1	 O(100K)	 O(μs)	 O(103)	
Cache2	 O(100K)	 O(μs)	 O(103)	

Great	 diversity	 in	 bo=lenecks	

?	
Use	 custom	 SKUs?	 Prohibi1vely	 expensive	

“Soft” SKUs: Best of Both Worlds
Can	 we	 achieve	 perf.	 efficiency	 without	 building	 custom	 SKUs?	

Tune	 coarse	 HW	 &	 OS	 knobs	
on	 commodity	 HW	

Performance	 	
efficiency	

Procurement	 efficiency	
&	 scalability	

Core	 	
freq.	

Uncore	 	
freq.	

Core	 	
count	

CDP	 Prefetcher	 THP	 SHP	

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Web

Cache2 Feed1

Feed2

Ads1
Cache1

Ads2

0

100

200

300

400

0 50 100 150

M
em

or
y l

at
en

cy
 (n

s)

Memory bandwidth (GB/s)

Skylake18 stress test latency Skylake20 stress test latency

Figure 12: Memory bandwidth vs. latency: microservices under-
utilize memory bandwidth to avoid latency penalties.

traffic burstiness. The curves also reveal why it is necessary
to run Cache1 and Ads2 on the higher-peak-bandwidth Sky-

lake20 platform to keep memory latency low. Nevertheless,
several microservices under-utilize available bandwidth, and
hence might benefit from optimizations that trade bandwidth
to improve latency, such as hardware prefetching [77].

We summarize our findings in Table 3.

3 “Soft” SKUs
Our microservices exhibit profound diversity in system-level
and architectural traits. For example, we demonstrated di-
verse OS and I/O interaction, code/data cache miss ratios,
memory bandwidth utilization, instruction mix ratios, and
CPU stall behavior. One way to address such distinct bottle-
necks is to specialize CPU architectures by building custom
hardware server SKUs to suit each service’s needs. However,
such hardware SKU diversity is impractical, as it requires
testing and qualifying each distinct SKU and careful capacity
planning to provision each to match projected load. Given
the uncertainties inherent in projecting customer demand,
investing in diverse hardware SKUs is not effective at scale.

Data center operators aim to maintain hardware resource
fungibility to preserve procurement advantages that arise
from economies of scale and limit the effort of qualifying
myriad hardware platforms. To preserve fungibility, we seek
strategies that enable a few server SKUs to provide perfor-
mance and energy efficiency over diverse microservices. To
this end, we propose exploiting coarse-grain (e.g., boot time)
parameters to create “soft SKUs”, tuning limited hardware
SKUs to better support their assigned microservice. However,
manually identifying microservice-specific soft-SKUs is im-
practical since the design space is large, code evolves quickly,
synthetic load tests do not necessarily capture production be-
havior, and the effects of tuning a single knob are often small
(a few percent performance change). Hence, we build an auto-
mated design tool—µSKU—that searches the configuration
design space to optimize for each microservice.

4 µSKU: System Design
µSKU is a design tool for quick discovery of performant and
efficient “soft” SKUs. µSKU automatically varies config-
urable server parameters, or “knobs,” by searching within a
predefined design space via A/B testing. A/B testing is the
process of comparing two identical systems that differ only
in a single variable. µSKU conducts A/B tests by comparing
the performance of two identical servers (i.e., same hardware
platform, same fleet, and facing the same load) that differ
only in their knob configuration. µSKU collects copious

Input file

Microservice)

Pla-orm)

Sweep)config.)

µSKU

))Input)file))
))parser)

))A/B)test)
configurator)

Knob
parameters

A/B Tester: production systems serving live traffic

Core)
frequency)

Uncore)
frequency)

Core))
count)

CDP:)
LLC) Prefetcher) THP) SHP)

Knob% Ideal%config%
Core)frequency) 2.2)GHz)

.)

.)
SHP) 300)

SoL)SKU))
generator)

Deployed on

servers

Figure 13: µSKU: system design

fine-grain performance measurements while conducting auto-
mated A/B tests on production systems serving live traffic to
search for statistically significant performance changes. We
aim to ensure that µSKU has a simple design so that it can
be applied across microservices and hardware SKU gener-
ations while avoiding operational complexity. Key design
challenges include: (1) identifying performance-efficient soft-
SKU configurations in a large design space, (2) dealing with
frequent code evolution, (3) capturing behavior in produc-
tion systems facing diurnal or transient load fluctuations, and
(4) differentiating actual performance variations from noise
through appropriate statistical tests. We discuss how µSKU’s
design meets these challenges.

We develop a µSKU prototype that explores a soft-SKU
design space comprising seven configurable server knobs.
µSKU accepts a few input parameters and then invokes its
components—A/B test configurator, A/B tester, and soft SKU
generator, as shown in Fig. 13. We describe each component
below.

Input file. The user provides an input file with the follow-
ing three input parameters.

(1) Target Microservice. Several aspects of µSKU’s behav-
ior must be tuned for the specific target microservice. µSKU
reboots the server while performing certain A/B tests (e.g.,
core count scaling). Some microservices may not tolerate
reboots on live traffic and hence µSKU disables these knobs
in such cases. Furthermore, µSKU disables knobs that do not
apply to a microservice. For example, Statically-allocated
Huge Pages (SHPs) are inapplicable to Ads1, since it does not
use the APIs to allocate them. Our current µSKU prototype
estimates performance by measuring the Millions of Instruc-
tions per Second (MIPS) rate via EMON [39], which we
have confirmed is proportional to several key microservices’
throughput (e.g., Web and Ads1). However, we anticipate
the performance metric that µSKU measures to determine
whether a particular soft SKU has improved performance
to be microservice specific. In particular, MIPS may be
insufficient to measure Cache’s throughput, since Cache’s
code is introspective of performance. (It executes exception
handlers when faced with knob configurations that engender
QoS violations, which make instructions-per-query vary with
performance.) µSKU can be extended to perform A/B tests
using microservice-specific performance metrics.

(2) Processor platform. The available settings in several
µSKU design space dimensions, such as specific core and
uncore frequencies, core counts, and hardware prefetcher
options, are hardware platform specific.

Soft SKU Performance

0	
1	
2	
3	
4	
5	
6	
7	
8	

Hand-‐tuned	 	 SoA	 SKU	

Pe
rf
.	 i
m
pr
ov
em

en
t	 (
%
)	 o

ve
r	

st
oc
k	
se
rv
er
	 c
on

fig
.	

Web	 (Skylake)	 Web	 (Broadwell)	 Ads1	

0%	

Up	 to	 7.2%	 perf.	 improvement	

SoD	 SKU	 can	 achieve	 ~7.2%	 throughput	 improvement	 on	 	
produc5on	 systems	 with	 no	 extra	 hardware	 requirement	

