
•  Comprehensive	  characteriza1on	  of	  Facebook’s	  microservices	  
q  System-‐level	  &	  architectural	  bo=lenecks	  
	  	  	  	  	  Reveals	  enormous	  bo=leneck	  diversity	  across	  microservices	  

•  Concept	  of	  “soA”	  server	  SKUs	  	  
q  Tuning	  coarse-‐grained	  OS	  &	  hardware	  configura1on	  knobs	  

•  µSKU	  
q  Automates	  soA-‐SKU	  search	  &	  configura1on	  via	  produc1on	  A/B	  tests	  
q  Deploys	  soA	  SKUs	  on	  produc1on	  microservices	  
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Web	   O(100)	   O(ms)	   O(106)	  
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Figure 12: Memory bandwidth vs. latency: microservices under-
utilize memory bandwidth to avoid latency penalties.

traffic burstiness. The curves also reveal why it is necessary
to run Cache1 and Ads2 on the higher-peak-bandwidth Sky-

lake20 platform to keep memory latency low. Nevertheless,
several microservices under-utilize available bandwidth, and
hence might benefit from optimizations that trade bandwidth
to improve latency, such as hardware prefetching [77].

We summarize our findings in Table 3.

3 “Soft” SKUs
Our microservices exhibit profound diversity in system-level
and architectural traits. For example, we demonstrated di-
verse OS and I/O interaction, code/data cache miss ratios,
memory bandwidth utilization, instruction mix ratios, and
CPU stall behavior. One way to address such distinct bottle-
necks is to specialize CPU architectures by building custom
hardware server SKUs to suit each service’s needs. However,
such hardware SKU diversity is impractical, as it requires
testing and qualifying each distinct SKU and careful capacity
planning to provision each to match projected load. Given
the uncertainties inherent in projecting customer demand,
investing in diverse hardware SKUs is not effective at scale.

Data center operators aim to maintain hardware resource
fungibility to preserve procurement advantages that arise
from economies of scale and limit the effort of qualifying
myriad hardware platforms. To preserve fungibility, we seek
strategies that enable a few server SKUs to provide perfor-
mance and energy efficiency over diverse microservices. To
this end, we propose exploiting coarse-grain (e.g., boot time)
parameters to create “soft SKUs”, tuning limited hardware
SKUs to better support their assigned microservice. However,
manually identifying microservice-specific soft-SKUs is im-
practical since the design space is large, code evolves quickly,
synthetic load tests do not necessarily capture production be-
havior, and the effects of tuning a single knob are often small
(a few percent performance change). Hence, we build an auto-
mated design tool—µSKU—that searches the configuration
design space to optimize for each microservice.

4 µSKU: System Design
µSKU is a design tool for quick discovery of performant and
efficient “soft” SKUs. µSKU automatically varies config-
urable server parameters, or “knobs,” by searching within a
predefined design space via A/B testing. A/B testing is the
process of comparing two identical systems that differ only
in a single variable. µSKU conducts A/B tests by comparing
the performance of two identical servers (i.e., same hardware
platform, same fleet, and facing the same load) that differ
only in their knob configuration. µSKU collects copious
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Figure 13: µSKU: system design

fine-grain performance measurements while conducting auto-
mated A/B tests on production systems serving live traffic to
search for statistically significant performance changes. We
aim to ensure that µSKU has a simple design so that it can
be applied across microservices and hardware SKU gener-
ations while avoiding operational complexity. Key design
challenges include: (1) identifying performance-efficient soft-
SKU configurations in a large design space, (2) dealing with
frequent code evolution, (3) capturing behavior in produc-
tion systems facing diurnal or transient load fluctuations, and
(4) differentiating actual performance variations from noise
through appropriate statistical tests. We discuss how µSKU’s
design meets these challenges.

We develop a µSKU prototype that explores a soft-SKU
design space comprising seven configurable server knobs.
µSKU accepts a few input parameters and then invokes its
components—A/B test configurator, A/B tester, and soft SKU
generator, as shown in Fig. 13. We describe each component
below.

Input file. The user provides an input file with the follow-
ing three input parameters.

(1) Target Microservice. Several aspects of µSKU’s behav-
ior must be tuned for the specific target microservice. µSKU
reboots the server while performing certain A/B tests (e.g.,
core count scaling). Some microservices may not tolerate
reboots on live traffic and hence µSKU disables these knobs
in such cases. Furthermore, µSKU disables knobs that do not
apply to a microservice. For example, Statically-allocated
Huge Pages (SHPs) are inapplicable to Ads1, since it does not
use the APIs to allocate them. Our current µSKU prototype
estimates performance by measuring the Millions of Instruc-
tions per Second (MIPS) rate via EMON [39], which we
have confirmed is proportional to several key microservices’
throughput (e.g., Web and Ads1). However, we anticipate
the performance metric that µSKU measures to determine
whether a particular soft SKU has improved performance
to be microservice specific. In particular, MIPS may be
insufficient to measure Cache’s throughput, since Cache’s
code is introspective of performance. (It executes exception
handlers when faced with knob configurations that engender
QoS violations, which make instructions-per-query vary with
performance.) µSKU can be extended to perform A/B tests
using microservice-specific performance metrics.

(2) Processor platform. The available settings in several
µSKU design space dimensions, such as specific core and
uncore frequencies, core counts, and hardware prefetcher
options, are hardware platform specific.
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