
Hiding the Microsecond-Scale Latency of Storage-Class Memories with Duplexity

Amirhossein Mirhosseini Akshitha Sriraman Thomas F. Wenisch
University of Michigan

{miramir,akshitha,twenisch}@umich.edu

I. INTRODUCTION

We are entering the “killer microsecond” era in data center
applications [1]. Due to advances in processor, memory, storage,
and networking technologies, events that stall execution increas-
ingly fall in a microsecond-scale latency range [2, 3]. Storage-class
memories, such as 3D Xpoint, are examples of such events that stall
execution for single-digit microseconds. Whereas contemporary
computing systems are effectively equipped with mechanisms to
hide nanosecond- and millisecond-scale stalls, they lack efficient
support for microsecond-scale stalls [1]. Nanosecond-scale stalls
are effectively hidden by microarchitectural mechanisms, such
as Out-of-Order (OoO) execution and deep memory hierarchies,
but these mechanisms are insufficient to hide microsecond-scale
stalls. Conversely, operating systems use context switching to hide
millisecond-scale latencies, such as when accessing disk. However,
context switch overheads (5-20µs [4]) are within the same latency
orders as microsecond-scale stalls, so they are not a plausible
latency-hiding technique for the microsecond regime.

Simultaneous multithreading (SMT) has been proposed to co-
locate latency-critical and batch threads on the same core so that
the batch threads fill the utilization holes caused by brief I/O stalls
or inter-request idle time [5, 6]. Already today, scale-out workloads
deployed in data centers exhibit low CPU utilization due to lack of
memory level parallelism and front-end inefficiencies, calling for
more SMT threads even in the absence of µs-scale stalls [7]. As
batch workloads also adopt mechanisms like storage-class memory
or rack-scale disaggregation, these workloads, too, will incur such
stalls. As a consequence, even more threads must be added to
ensure that, at any time, there are enough unstalled threads to fill a
core’s available execution bandwidth—the two threads offered by
Intel’s hyper-threading are not nearly enough.

Unfortunately, scaling SMT microarchitecture to support many
more threads is prohibitive, due to high logic complexity, wire
delay, limited register file (RF) capacity, and cache pressure/thrash-
ing among threads. Moreover, as previous studies have shown [8],
some SMT thread co-locations can have catastrophic impact on
the tails of latency-critical threads, especially at high loads, due
to contention for shared resources [9]. To avoid compromising the
tail latency of critical threads due to SMT interference, we instead
design Duplexity [10], a server architecture that seeks directly to
address the killer-microsecond challenge—to fill in the µs-scale
“holes” in threads’ execution schedules, which arise due to idleness
and stalls, with useful execution, without impacting the tail latency
of latency-critical threads.

Duplexity is the first server architecture that aims to improve
server utilization in the presence of µs-scale stalls, without sac-
rificing QoS and tail latency of micro-services. Our evaluation,
using Gem5 [11] and BigHouse [12] simulation frameworks,

demonstrates that Duplexity can improve core utilization by 4.8×
and 1.9×, and iso-throughput 99th-percentile tail latency by 1.8×
and 2.7×, on average, over a baseline OoO and an SMT-based
server architecture, respectively.

II. DUPLEXITY

We next present Duplexity—a server architecture that aims to fill
in cycles lost to µs-scale stalls (e.g., caused by storage-class mem-
ories) while preserving tail latency and QoS. Duplexity comprises
two kinds of cores: master-cores, optimized for latency-sensitive
micro-services and lender-cores, optimized for latency-insensitive
scale-out applications. Duplexity addresses the killer microsecond
challenge by borrowing “filler” threads from the lender-cores and
executing them on the master-cores during the µs-scale “holes”
arising from I/O stalls and idleness. To facilitate borrowing threads,
master-cores and lender-cores are arranged in pairs, called ‘dyads’,
with data paths that allow filler threads running on the master-core
to remotely access caches located at the lender-core. Master-cores
build upon concepts from morphable cores [13], allowing them to
morph between a single-threaded dynamically scheduled execution
mode to execute their latency-sensitive master-thread, and a multi-
threaded in-order execution mode to execute latency-insensitive
filler threads, borrowed from the lender-core. Lender-cores employ
a Hierarchical Simultaneous Multithreading (HSMT) architecture,
wherein they maintain a backlog of latency-insensitive threads that
time-multiplex hardware contexts, from which the master-core may
borrow. We integrate these concepts with efficient mechanisms to
support rapid thread-context transfer into and out of the master-
core and to protect the single latency-critical master thread from
interference by filler-threads. Our key objectives are (1) to fill
in idle/stalled periods in the master-core with useful work from
filler threads, and (2) to minimize disruption, especially tail latency
increases, of the master thread.

When executing the master thread, a master-core operates as
an n-way OoO processor, with all execution resources dedicated
to maximizing single-thread performance. However, whenever the
master thread becomes idle or incurs a µs-scale stall, the core’s
“morphing” feature is activated, which partitions the issue queue
and register file and deactivates OoO issue logic to instead support
InO issue of multiple filler threads. The master-core then loads reg-
ister state for these filler threads from the lender-core’s scheduling
backlog and begins their execution. When the master thread returns
(stall resolves or new work arrives), it evicts the filler threads, using
hardware mechanisms that evacuate their register state as fast as
possible. Minimizing performance disruption of the master thread
is challenging. In a key departure from prior work, we ensure that
filler threads cannot disrupt the cache state of the master thread. We
provision a path from the master-core’s memory stage and front-
end to the lender-core’s caches; filler threads access the memory



Master Thread

Filler
Threads

RF

RFI/D 
caches 

and 
TLBs

I/D 
caches 

and 
TLBs

Branch predictor

Branch predictor

...

Lender
core

Master
core

L1 Inst 
$

L1 Data 
$

L1 Inst 
$

L1 Data 
$

Lender
core

Master

core

L1 Inst 
$

L1 Data 
$

L1 Inst 
$

L1 Data 
$

Master state Filler-thread state

L0

L0

Lender
core

Master
core

Lender
core

Master
core

LLC

Memory, I/O 
controllers, etc

(a) (b) (c)

...

...

Lender
core

Master
core

Lender
core

Master
core

...

...

Sh
ar

ed
 t

h
re

ad
 b

ac
kl

o
gs

Figure 1. (a) A naive master-core design where stateful micro-architectural components are replicated across modes, (b) A Duplexity dyad composed of
a master-core and a lender-core, and (c) Layout of a Duplexity server processor chip.

hierarchy of the lender-core. Hence, when the master thread returns,
there is little evidence the filler threads were ever there.

We must ensure that filler threads do not thrash the master
thread’s state. The naive approach, shown in Figure 1(a), is to
replicate all stateful micro-architectural structures (register files,
caches, branch predictor, TLBs, etc.), segregating the filler threads’
from the master thread’s state. The problem with replicating all
structures is that caches and register file are large and power-
hungry. In particular, depending on microarchitecture, register files
usually consume 5%-20% and L1 caches consume 10%-40% of a
core’s area. So, this approach undermines Duplexity’s performance
density and energy efficiency objectives.

Instead, Duplexity replicates only the area-inexpensive struc-
tures. We provision a TLB and a branch predictor for exclusive
use by filler threads. For the register file, we provision empty
physical registers to store the architectural state of filler threads,
using the renaming logic to track the assignment of logical filler-
thread registers to physical registers. Once its in-flight instructions
are squashed or drained, the master thread occupies only enough
physical registers to maintain its architectural state. Instead of
replicating caches, we pair a master-core with a lender-core to form
a dyad. When a master-core morphs into filler-thread mode, the
filler threads remotely access the L1 instruction and data caches
of the lender-core. The dyad provides data paths from the master-
core’s fetch and memory units to the lender-core’s caches, as shown
in Figure 1(b). This approach has two benefits: (1) it protects the
master thread’s state, and (2) it allows filler threads to hit on their
own cache state as they migrate between the cores. However, this
approach also entails two challenges: (1) The L1 access latency
of filler threads on the master-core is ∼3 cycles higher than
local cache access in either core. (2) The capacity pressure and
bandwidth requirements on the lender-core’s caches increase, since
both cores may access them.

We address these challenges by provisioning a small 2KB L0
I-cache and a 4KB L0 write-through D-cache in the master-core
for accesses to the lender-core’s L1 caches. Although these L0
caches have low hit rates, they act as effective bandwidth filters
and service many sequential accesses, especially for instructions.
Whereas capacity pressure on the lender-core’s L1 cache is high,
HSMT is inherently latency-tolerant; our evaluation demonstrates
a net throughput win. we reuse the L0 data cache to accelerate
spilling filler-thread architectural state. The L0 cache is write-
through, hence, its contents can be discarded or overwritten at
any time. When the master-thread becomes ready, all pending
filler-thread instructions are immediately flushed. Then, all physical
register file read ports are used to read filler thread architectural

state and write it to the L0 data cache. With 8 read ports and an L0
write bandwidth of one cache-line per cycle, it takes less than 50
cycles to spill the filler threads. The master thread’s architectural
state is already present in the physical register file, as we do not
evict it. Filler-thread register state is drained from the L0 to the
dedicated backing store in memory in the background.

Figure 1(c) depicts the final Duplexity design, comprising several
dyads each with a master- and a lender-core that share virtual
contexts. The lender-core uses HSMT with 8 physical contexts
sharing an 8-way InO datapath. HSMT enables the lender-core to
hide µs-scale stalls in its latency-insensitive virtual context pool.
The master-core can fill master-thread’s µs-scale holes with filler
threads borrowed from the lender-core by morphing into an InO
HSMT architecture, while still protecting the master-thread from
tail latency disruption. Sharing virtual contexts across the dyad
prevents contexts from starving.

REFERENCES

[1] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the killer
microseconds,” Communications of the ACM, vol. 60, no. 4, pp. 48–54, 2017.

[2] Intel, “3D Xpoint.” https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-micron-3d-xpoint-webcast.html.

[3] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent page
management for two-tiered main memory,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 631–644, ACM, 2017.

[4] A. Sriraman and T. F. Wenisch, “utune: Auto-tuned threading for oldi microser-
vices,” in Operating Systems Design and Implementation (OSDI), 2018.

[5] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise qos
prediction on real-system smt processors to improve utilization in warehouse
scale computers,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 406–418, IEEE Computer Society, 2014.

[6] X. Yang, S. M. Blackburn, and K. S. McKinley, “Elfen scheduling: Fine-
grain principled borrowing from latency-critical workloads using simultaneous
multithreading.,” in USENIX Annual Technical Conference, pp. 309–322, 2016.

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a
study of emerging scale-out workloads on modern hardware,” in ACM SIGPLAN
Notices, ACM, 2012.

[8] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles:
improving resource efficiency at scale,” in ACM SIGARCH Computer Architec-
ture News, vol. 43, pp. 450–462, ACM, 2015.

[9] A. Mirhosseini and T. F. Wenisch, “The queuing-first approach for tail manage-
ment of interactive services,” IEEE Micro, 2019.

[10] A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “Enhancing server efficiency
in the face of killer microseconds,” in High Performance Computer Architecture
(HPCA), 2019 IEEE 25th International Symposium on, IEEE, 2019.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[12] D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simulation infrastructure for
data center systems,” in Performance Analysis of Systems and Software (ISPASS),
2012 IEEE International Symposium on, IEEE, 2012.

[13] M. A. Suleman, M. Hashemi, C. Wilkerson, Y. N. Patt, et al., “Morphcore: An
energy-efficient microarchitecture for high performance ilp and high throughput
tlp,” in IEEE/ACM International Symposium on Microarchitecture, 2012.

2


