
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

µTune: Auto-Tuned Threading
for OLDI Microservices

Akshitha Sriraman and Thomas F. Wenisch, University of Michigan

https://www.usenix.org/conference/osdi18/presentation/sriraman

µTune: Auto-Tuned Threading for OLDI Microservices

Akshitha Sriraman Thomas F. Wenisch

University of Michigan

akshitha@umich.edu, twenisch@umich.edu

ABSTRACT
Modern On-Line Data Intensive (OLDI) applications have
evolved from monolithic systems to instead comprise
numerous, distributed microservices interacting via Re-
mote Procedure Calls (RPCs). Microservices face sub-
millisecond (sub-ms) RPC latency goals, much tighter
than their monolithic counterparts that must meet ≥ 100
ms latency targets. Sub-ms–scale threading and concur-
rency design effects that were once insignificant for such
monolithic services can now come to dominate in the
sub-ms–scale microservice regime. We investigate how
threading design critically impacts microservice tail la-
tency by developing a taxonomy of threading models—a
structured understanding of the implications of how mi-
croservices manage concurrency and interact with RPC
interfaces under wide-ranging loads. We develop µTune,
a system that has two features: (1) a novel framework that
abstracts threading model implementation from applica-
tion code, and (2) an automatic load adaptation system
that curtails microservice tail latency by exploiting in-
herent latency trade-offs revealed in our taxonomy to
transition among threading models. We study µTune in
the context of four OLDI applications to demonstrate up
to 1.9× tail latency improvement over static threading
choices and state-of-the-art adaptation techniques.

1 Introduction
On-Line Data Intensive (OLDI) applications, such as web
search, advertising, and online retail, form a major frac-
tion of data center applications [113]. Meeting soft real-
time deadlines in the form of Service Level Objectives
(SLOs) determines end-user experience [21, 46, 55, 95]
and is of paramount importance. Whereas OLDI appli-
cations once had largely monolithic software architec-
tures [50], modern OLDI applications comprise numer-
ous, distributed microservices [66, 90, 116] like HTTP
connection termination, key-value serving [72], query
rewriting [48], click tracking, access-control manage-

ment, protocol routing [25], etc. Several companies,
such as Amazon [6], Netflix [1], Gilt [37], LinkedIn [17],
and SoundCloud [9], have adopted microservice architec-
tures to improve OLDI development and scalability [144].
These microservices are composed via standardized Re-
mote Procedure Call (RPC) interfaces, such as Google’s
Stubby and gRPC [18] or Facebook/Apache’s Thrift [14].

Whereas monolithic applications face ≥ 100 ms
tail (99th+%) latency SLOs (e.g.,∼300 ms for web
search [126, 133, 142, 150]), microservices must often
achieve sub-ms (e.g., ∼100 µs for protocol routing [151])
tail latencies as many microservices must be invoked se-
rially to serve a user’s query. For example, a Facebook
news feed service [79] query may flow through a serial
pipeline of many microservices, such as (1) Sigma [15]:
a spam filter, (2) McRouter [118]: a protocol router, (3)
Tao [56]: a distributed social graph data store, (4) My-
Rocks [29]: a user database, etc., thereby placing tight
sub-ms latency SLOs on individual microservices. We ex-
pect continued growth in OLDI data sets and applications
to require composition of ever more microservices with
increasingly complex interactions. Hence, the pressure
for better microservice latency SLOs continually mounts.

Threading and concurrency design have been shown
to critically affect OLDI response latency [76, 148]. But,
prior works [71] focus on monolithic services, which
typically have ≥ 100 ms tail SLOs [111]. Hence, sub-ms–
scale OS and network overheads (e.g., a context switch
cost of 5-20 µs [101, 141]) are often insignificant for
monolithic services. However, sub-ms–scale microser-
vices differ intrinsically: spurious context switches, net-
work/RPC protocol delays, inept thread wakeups, or lock
contention can dominate microservice latency distribu-
tions [39]. For example, even a single 20µs spurious con-
text switch implies a 20% latency penalty for a request to a
100 µs SLO protocol routing microservice [151]. Hence,
prior conclusions must be revisited for the microservice
regime [49].

In this paper, we study how threading design affects mi-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 177

Final response
Front-end
microserver

Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Intermediate response

Mid-tier response path:
Merge to form final response

Front-end
response path:
Response
presentation

Mid-tier request path:
1.  Process query
2.  Launch clients to leaf µsrvs

Query

Query

Query

Query

Intermediate response

Intermediate response

µTune

Figure 1: A typical OLDI application fan-out.

croservice tail latency, and leverage these design effects
to dynamically improve tails. We develop a system called
µTune, which features a framework that builds upon open-
source RPC platforms [18] to enable microservices to ab-
stract threading model design from service code. We ana-
lyze a taxonomy of threading models enabled by µTune.
We examine synchronous or asynchronous RPCs, in-line
or dispatched RPC handlers, and interrupt- or poll-based
network reception. We also vary thread pool sizes dedi-
cated to various purposes (network polling, RPC handling,
response execution). These design axes yield a rich space
of microservice architectures that interact with the un-
derlying OS and hardware in starkly varied ways. These
threading models often have surprising OS and hardware
performance effects including cache locality and pollu-
tion, scheduling overheads, and lock contention.

We study µTune in the context of four full OLDI ser-
vices adopted from µSuite [134]. Each service com-
prises sub-ms microservices that operate on large data
sets. We focus our study on mid-tier microservers: widely-
used [50] microservices that accept service-specific RPC
queries, fan them out to leaf microservers that perform
relevant computations on their respective data shards,
and then return results to be integrated by the mid-tier
microserver, as illustrated in Fig. 1. The mid-tier mi-
croserver is a particularly interesting object of study since
(1) it acts as both an RPC client and an RPC server, (2) it
must manage fan-out of a single incoming query to many
leaf microservers, and (3) its computation typically takes
tens of microseconds, about as long as OS, networking,
and RPC overheads.

We investigate threading models for mid-tier microser-
vices. Our results show that the best threading model de-
pends critically on the offered load. For example, at low
loads, models that poll for network traffic perform best,
as they avoid expensive OS thread wakeups. Conversely,
at high loads, models that separate network polling from
RPC execution enable higher service capacity and block-
ing outperforms polling for incoming network traffic as it
avoids wasting precious CPU on fruitless poll loops.

We find that the relationship between optimal threading
model and service load is complex—one could not expect
a developer to pick the best threading model a priori. So,
we build an intelligent system that uses offline profiling
to automatically adapt to time-varying service load.

µTune’s second feature is an adaptation system that
determines load via event-based load monitoring and
tunes both the threading model (polling vs. blocking
network reception; inline vs. dispatched RPC execution)
and thread pool sizes in response to load changes. µTune
improves tail latency by up to 1.9× over static peak load-
sustaining threading models and state-of-the-art adapta-
tion techniques, with < 5% mean latency and instruction
overhead. Hence, µTune can be used to dynamically cur-
tail sub-ms–scale OS/network overheads that dominate in
modern microservices.

In summary, we contribute:

• A taxonomy of threading models: A structured un-
derstanding of microservice threading models and
their implications on performance.

• µTune’s framework 1 for developing microservices,
which supports a wide variety of threading models.

• µTune’s load adaptation system for tuning thread-
ing models and thread pools under varying loads.

• A detailed performance study of OLDI services’ key
tier built with µTune: the mid-tier microserver.

2 Motivation
We motivate the need for a threading taxonomy and adap-
tation systems that respond rapidly to wide-ranging loads.

Many prior works have studied leaf servers [63, 107,
108, 123, 142, 143], as they are typically most numer-
ous, making them cost-critical. Mid-tier servers [68, 98],
which manage both incoming and outgoing RPCs to many
clients and leaves, perhaps face greater tail latency opti-
mization challenges, but have not been similarly scruti-
nized. Their network fan-out multiplies underlying soft-
ware stack interactions. Hence, performance and scalabil-
ity depend critically on mid-tier threading model design.

Expert developers extensively tune critical OLDI ser-
vices via trial-and-error or experience-based intuition [84].
Few services can afford such effort; for the rest, we must
appeal to software frameworks and automatic adaptation
to improve performance. µTune aims to empower small
teams to develop performant mid-tier microservices that
meet latency goals without enormous tuning efforts.

The need for a threading model taxonomy. We de-
velop a structured understanding of rational design op-
tions for architecting microservices’ OS/network interac-
tions in the form of a taxonomy of threading models. We
1Available at https://github.com/wenischlab/MicroTune

178 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0	

0.5	

1	

1.5	

2	

10	 100	 1000	 10000	 99
th
	 p
er
ce
n/

le
	 ta

il	
la
te
nc
y	
(m

s)
	

Load	 (Queries	 Per	 Second)	

Block-‐based	 threading	 model	 Poll-‐based	 threading	 model	

1.35x	

satura/on	

inflec/on	
point	

∞

Figure 2: 99th% tail latency for an RPC handled by a block-
based & poll-based model: poll-based model improves latency
by 1.35x at low load, and saturates at high load.

study these models’ latency effects under diverse loads to
offer guidance on when certain models perform best.

Prior works [69,83,84,146,148] broadly classify mono-
lithic services as: thread-per-request synchronous or
event-driven asynchronous. We note threading design
space dimensions beyond these coarse-grain designs. We
build on prior works’ insights, such as varying parallelism
to reduce tail latency [76], to consider a more diverse tax-
onomy and spot sub-ms performance concerns.

The need for automatic load adaptation. Subtle
changes in a microservice’s OS interaction (e.g., how
it accepts incoming RPCs) can cause large tail latency
differences. For example, Fig. 2 depicts the 99th% tail
latency for a sample RPC handled by an example mid-tier
microservice as a function of load. We use a mid-tier mi-
croserver with 36 physical cores that dispatches requests
received from the front-end to a group of worker threads
which then invoke synchronous calls to the leaves. The
yellow line is the tail latency when we dedicate a thread
to poll for incoming network traffic in a CPU-unyielding
spin loop. The blue line blocks on the OS socket interface
awaiting work to the same RPC handler. We see a stark
load-based performance inflection even for these simple
designs. At low load, a poll-based model gains 1.35× la-
tency as it avoids OS thread wakeups. Conversely, at high
load, fruitless poll loops waste precious CPU that might
handle RPCs. The poll-based model becomes saturated,
with arrivals exceeding service capacity and unbounded
latency growth. Blocking-based models conserve CPU
and are more scalable.

We assert that such design trade-offs are not obvious:
no single threading model is optimal at all loads, and even
expert developers have difficulty making good choices.
Moreover, most software adopts a threading model at
design time and offers no provision to vary it at runtime.

A microservice framework. Instead, we propose a
novel microservice framework in µTune that abstracts
threading design from the RPC handlers. The µTune sys-

tem adapts to load by choosing optimal threading models
and thread pool sizes dynamically to reduce tail latency.

µTune aims to allow a microservice to be built once
and be scalable across wide-ranging loads. Many OLDI
services experience drastic diurnal load variations [79].
Others may face “flash crowds” that cause sudden load
spikes (e.g., intense traffic after a major news event). New
OLDI services may encounter explosive customer growth
that surpasses capacity planning (e.g., the meteoric launch
of Pokemon Go [31]). Supporting load scalability over
many orders of magnitude in a single framework facili-
tates rapid scale-up of a popular new service.

3 A Taxonomy of Threading Models
A threading model is a software system design choice that
governs how responsibility for key application functional-
ity will be divided among threads and how the application
will achieve request concurrency. Threading models criti-
cally impact the service’s throughput, latency, scalability,
and programmability. We characterize preemptive instead
of co-operative (e.g., node.js [140]) threading models.

3.1 Key dimensions
We identify three threading model dimensions and discuss
their programmability and performance implications.

Synchronous vs. asynchronous communication.
Prior works have identified synchronous vs. asynchronous
communication as a key design choice in monolithic
OLDI services [69,83,84,146,148]. Synchronous models
map a request to a single thread throughout its lifetime.
Request state is implicitly tracked via the thread’s PC
and stack—programmers simply maintain request state in
automatic variables. Threads use blocking I/O to await
responses from storage or leaf nodes. In contrast, asyn-
chronous models are event-based—programmers explic-
itly define state machines for a request’s progress [83].
Any ready thread may progress a request upon event re-
ception; threads and requests are not associated.

Programmability: Synchronous models are typically
easier to program, as they entail writing straight-forward
code without worrying about elusive concurrency-related
subtleties. Conversely, asynchronous models require ex-
plicit reasoning about request state, synchronization, and
races. Ensuing code is often characterized as “spaghetti”—
control flow is obscured by callbacks, continuations, fu-
tures, promises, and other sophisticated paradigms. Due
to this vast programmability gap, we spent three weeks
implementing synchronous and four months for asyn-
chronous models.

Performance: As synchronous models await leaf re-
sponses before progressing new requests, they face re-
quest/response queuing delays, producing worse response
latencies and throughput than asynchronous [69,114,146].
Adding more synchronous threads can allay queuing, but

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 179

can induce secondary bottlenecks, such as cache pollution,
lock contention, and scheduling/thread wakeup delays.

Synchronous apps: Azure SQL [5], Google Cloud
SQL’s Redmine [10, 100], MongoDB replication [28]

Asynchronous apps: Apache [3], Azure blob
storage [27], Redis replication [34], Server-Side
Mashup [105], CORBA Model, Aerospike [2]

In-line vs. dispatch-based RPC processing. In in-
line models, a single thread manages the entire RPC
lifetime, from the point where it is accepted from the
RPC library until its response is returned. Dispatch-based
models separate responsibilities between network threads,
which accept new requests from the underlying RPC in-
terface, and worker threads, which execute RPC handlers.

Programmability: In-line models are simple; thread
pools block/poll on the RPC arrival queue and execute
an RPC completely before receiving another. Dispatched
models are more complex; RPCs are explicitly passed
from network to worker threads via thread-safe queues.

Performance: In-line models avoid the explicit state
hand-off and thread-hop to pass work from network to
worker threads. Hence, they are efficient at low loads and
for short requests, where dispatch overheads dominate
service times. But, if a single thread cannot sustain the
service load, multiple threads contending to accept work
typically outweighs hand-off costs, which can be carefully
honed. In-line models are prone to high queuing, as each
thread processes whichever request it receives. In contrast,
dispatched models can explicitly prioritize requests.

In-line apps: Redis [41, 58], MapReduce workers [64]
Apps that dispatch: IBM’s WebSphere for z/OS [22,

81], Oracle’s EDT image search [20], Mule ESB [12],
Malwarebytes [19], Celery for RabbitMQ and Redis [11],
Resque [35] and RQ [36] Redis queues, NetCDF [74]

Block- vs. poll-based RPC reception. While the syn-
chronous and in-line dimensions address outgoing RPCs,
the block vs. poll dimension concerns incoming RPCs. In
block-based models, threads await new work via block-
ing system calls, yielding CPU if no work is available.
Threads block on I/O interfaces (e.g., read() or epoll()
system calls) awaiting work. In poll-based models, a
thread spins in a loop, continuously looking for new work.

Performance: The poll vs. block trade-off is intrinsic:
polling reduces latency, while blocking frees a waiting
CPU to perform other work. Polling incurs lower latency
as it avoids OS thread wakeups [106] to which blocking
is prone. But, polling wastes CPU time in fruitless poll
loops, especially at low loads. Yet, many latency-sensitive
services opt to poll [34], perhaps solely to avoid unex-
pected hardware or OS actions, such as a slow transition
to a low-power mode [51]. Many polling threads can
contend to cause pathologically poor performance [88].

Apps that block: Redis BLPOP [7]
Apps that poll: Intel’s DPDK Poll Driver [32], Re-

Mid-tier Leaf

Front end

Request

Compute

In-line thread

In-line thread

Response

NW socket

In-line thread:
<block/poll>

Synchronous
Request

Worker

Response

NW socket

Network thread:
<block/poll>

Worker awaits
 notification

Synchronous

Compute

Mid-tier Leaf

Front end

Worker notified

Task queue

(a) (b)

Dispatch

Figure 3: Execution of an RPC by (a) SIB/SIP (b) SDB/SDP

dis replication [34], Redis LPOP [24], DoS attacks and
defenses [117, 125, 132], GCP Health Checker [38]

These three dimensions lead to eight mid-tier threading
models. We also vary thread pool sizes for these models.

3.2 Synchronous models
In synchronous models, we create maximally sized thread
pools on start-up and then “park” extraneous threads on
condition variables, to rapidly supply threads as needed
without pthread_create() call overheads. To simplify
our figures, we omit parked threads from them.

The main thread handling each RPC uses fork-join par-
allelism to fan concurrent requests out to many leaves.
The main thread wakes a parked thread to issue each out-
going RPC, blocking on its reply. As replies arrive, these
threads decrement a shared atomic counter before parking
on a condition variable to track the last reply. The last
reply signals the main thread to execute the continuation
that merges leaf results and responds to the client.

We next detail each synchronous model with respect to
a single RPC execution. For simplicity, our figures show
a three-tier service with a single client, mid-tier, and leaf.

Synchronous In-line Block (SIB). This model is the
simplest, having only a single thread pool (Fig. 3(a)). In-
line threads block on network sockets awaiting work, and
then execute a received RPC to completion, signalling
parked threads for outgoing RPCs as needed. The thread
pool must grow with higher load.

Synchronous In-line Poll (SIP). SIP differs from SIB
in that threads poll for new work using non-blocking APIs
(Fig. 3(a)). SIP avoids blocked thread wakeups when
work arrives, but, each in-line thread fully utilizes a CPU.

Synchronous Dispatch Block (SDB). SDB comprises
two thread pools (Fig. 3(b)). The network threads block
on socket APIs awaiting new work. But, rather than exe-
cuting the RPC, they dispatch the RPC to a worker thread
pool by using producer-consumer task-queues and sig-
nalling condition variables. Workers pull requests from
task queues, and then process them much like the prior
in-line threads (i.e., forking for fan-out and issuing syn-

180 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Worker awaits
signal

Mid-tier Leaf

Front end

Request

Compute

In-line thread

NW (server) socket

In-line thread:
<block/poll>

(a)

Resp. thread:
<block/poll>

Asynchronous NW
(client)
socket

Response

Resp. thread

Front-
end

Request

Network
thread:
<block/poll>

Worker notified

Dispatch

Mid-tier Leaf

NW (server) socket

(b)

Resp. thread:
<block/poll>

Asynchronous NW
(client)
socket

Response

Resp.
thread

Compute

Task queue

Figure 4: Execution of an RPC by (a) AIB/AIP (b) ADB/ADP

chronous leaf requests). A worker sends the RPC reply to
the front-end, before blocking on the condition variable
to await new work. Both network and worker pool sizes
are variable. Concurrency is limited by the worker pool
size. Typically, a single network thread is sufficient.

SDB restricts incoming socket interactions to the net-
work threads, which improves locality; RPC and OS in-
terface data structures do not migrate among threads.

Synchronous Dispatch Poll (SDP). In SDP, network
threads poll on front-end sockets for new work (Fig. 3(b)).

3.3 Asynchronous models
Asynchronous models differ from synchronous in that
they do not tie an execution thread to a specific RPC—all
RPC state is explicit. Such models are event-based—an
event, such as a leaf request completion, arrives on any
thread and is matched to its parent RPC using shared
data structures. So, any thread may progress any RPC
through its next execution stage. This approach requires
drastically fewer thread switches during an RPC lifetime.
For example, leaf request fan-outs require a simple for
loop, instead of a complex fork-and-wait.

To aid non-blocking calls to both leaves and front-end
servers, we add another thread pool that exclusively han-
dles leaf server responses—the response thread pool.

Asynchronous In-line Block (AIB). AIB (Fig. 4(a))
uses in-line threads to handle incoming front-end requests,
and response threads to execute leaf responses. Both
thread pools block on their respective sockets awaiting
new work. An in-line thread initializes a data structure
for an RPC, records the number of leaf responses it ex-
pects, records a functor for the continuation to execute
when the last response returns, and then fans leaf requests
out in a simple for loop. Responses arrive (potentially
concurrently) on response threads, which record their
results in the RPC data structure and count down until
the last response arrives. The final response invokes the
continuation to merge responses and complete the RPC.

Asynchronous In-line Poll (AIP). In AIP, in-line and

Mid-tier Leaf

Front end

Request

Compute

In-line thread

In-line thread

Response

NW socket

In-line thread:
<block>

Synchronous

Mid-tier Leaf

Front end

Request

Compute

In-line thread

Response

NW socket

Synchronous

(a) (b)

Mid-tier Front-
end

Request

Worker

Response

NW socket

Network thread:
<block>

Task queue

Worker notified

Worker awaits
 notification

Synchronous

Dispatch

Leaf

Compute

Mid-tier Front-
end

Request

Worker

Response

NW socket

Network thread:
<poll>

Task queue

Worker notified

Worker awaits
 notification

Synchronous

Dispatch

Leaf

Compute

(a) (b)

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<block>

Response

NW (server)
socket

In-line thread:
<block>

Asynchronous

Leaf

NW (client)
socket

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<poll>

Response

NW (server)
socket

In-line thread:
<poll>

Asynchronous

Leaf

NW (client)
socket

(a) (b)

Front-
end

Request

Network thread:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier Leaf

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<block>

Request

Network thread:
<poll>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<poll>

Front-
end

Mid-tier Leaf

(a) (b)

SIB SIP SDB SDP AIB AIP ADB ADP

(a) µTune framework

Offline
training

(b) Async. µTune’s automatic load adaptation system

1

Create
piecewise
linear model

Request	 rate	 Best	 TM	 Ideal	 no.	 of	 threads	

0	 –	 128	 QPS	 AIP	 Inline:	 one	

.	

.	

4096	 –	 8192	
QPS	

ADB	 NW	 poller:	 one	 	
Workers:	 few	 (eg.	 4),	
Resp.	 threads:	 few	

Online:
Request from
front-end gRPC

Circular event buffer 1

2

Request	
rate	

compute	

Send to
switching
logic

Switch	 to	 best	
TM	 and	

thread	 poll	
sizes	 if	 needed	

ProcessRequest()

InvokeLeafAsync()

Request
to leaf

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<block>

Response

NW (server)
socket

In-line thread:
<block>

Asynchronous

Leaf

NW (client)
socket

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<poll>

Response

NW (server)
socket

In-line thread:
<poll>

Asynchronous

Leaf

NW (client)
socket

(a) (b)

Front-
end

Request

Network thread:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier Leaf

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<block>

Request

Network thread:
<poll>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<poll>

Front-
end

Mid-tier Leaf

(a) (b)

FinalizeResponse() Response from leaf Response to
front-end

3

4

5

6

7

10 11

8

9

2

Figure 5: µTune: system design

response threads poll their respective sockets (Fig. 4(a)).
Asynchronous Dispatch Block (ADB). In ADB, dis-

patch enables network thread concentration, improving
locality and socket contention (Fig. 4(b)). Like SDB,
network and worker threads accept and execute RPCs, re-
spectively. Response threads count-down and merge leaf
responses. We do not explicitly dispatch responses, as all
but the last response thread do negligible work (stashing
a response packet and decrementing a counter). All three
thread pools vary in size. Typically, one network thread
is sufficient, while the other pools must scale with load.

Asynchronous Dispatch Poll (ADP). Network and re-
sponse threads poll for new work (Fig. 4(b)).

4 µTune: System Design
µTune has two features: (a) an implementation of all eight
threading models, abstracting RPC (OS/network interac-
tions) within the framework (Fig. 5(a)); and (b) an adapta-
tion system that judiciously tunes threading models under
changing load (Fig. 5(b)). µTune’s system design chal-
lenges include (1) offering a simple interface that abstracts
threading from service code, (2) quick load shift detection
for efficient dynamic adaptation, (3) adept threading mod-
els switches, and (4) sizing thread pools without thread
creation, deletion, or management overheads. We discuss
how µTune’s design meets these challenges.

Framework. µTune abstracts the threading model
boiler-plate code from service-specific RPC implementa-
tion details, wrapping the underlying RPC API. µTune
enables characterizing the pros and cons of each model.

µTune offers a simple abstraction where service-
specific code must implement RPC execution interfaces.
For synchronous modes, the service must supply a Pro-
cessRequest() method per RPC. ProcessRequest()
is invoked by in-line or worker threads. This method pre-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 181

pares a concurrent outgoing leaf RPC batch and passes
it to InvokeLeaf(), which fans it out to leaf nodes. In-
vokeLeaf() returns to ProcessRequest() after receiv-
ing all leaf replies. The ProcessRequest() continua-
tion merges replies and forms a response to the client.

For asynchronous modes, µTune’s interface is slightly
more complex. Again, the service must supply Process-

Request(), but, it must explicitly represent RPC state in
a shared data structure. ProcessRequest() may make
one/more calls to InvokeLeafAsync(). These calls are
passed an outgoing RPC batch, a tag identifying the par-
ent RPC, and a FinalizeResponse() callback. The
tags enable request-response matching. The last arriving
response thread invokes FinalizeReponse(), which
may access the RPC data structure and response protocol
buffers from each leaf. A developer must ensure thread-
safety. FinalizeResponse() may be invoked any time
after InvokeLeafAsync(), and may be concurrent with
ProcessRequest(). Reasoning about races is the key
challenge of asynchronous RPC implementation.

Automatic load adaptation. A key feature of µTune
is its ability to automatically select among threading mod-
els in response to load, thereby relieving developers of
the burden of selecting a threading model a priori.

Synchronous vs. asynchronous microservices have a
major programmability gap. Although µTune’s frame-
work hides some complexity, it is not possible to switch
automatically and dynamically between synchronous and
asynchronous modes, as their API and application code
requirements necessarily differ. If an asynchronous imple-
mentation is available, it will outperform its synchronous
counterpart. So, we build µTune’s adaption separately for
synchronous and asynchronous models.

µTune picks the latency-optimal model among the four
options (in-line vs. dispatch; block vs. poll) and tunes
thread pool sizes dynamically with load. µTune aims
to curtail 99th% tail latency. It monitors service load
and (a) picks a latency-optimal threading model, then (b)
scales thread pools by parking/unparking threads. Both
adaptations use profiles generated during an offline train-
ing phase. We describe the training and adaptation steps
shown in Fig. 5(b).

Training phase. (1) During offline characterization,
we use a synthetic load generator to drive specific load
levels for sustained intervals. During these intervals, we
vary threading model and thread pool sizes and observe
99th% tail latencies. The load generator then ramps load
incrementally, and we re-characterize at each load step.
(2) µTune then builds a piece-wise linear model relating
offered load to observed tail latency at each load level.

Runtime adaptation. (1) µTune uses event-based win-
dowing to monitor loads offered to the mid-tier at runtime.
(2) µTune records each request’s arrival timestamp in a cir-
cular buffer. (3) It then estimates the inter-arrival rate by

using the circular buffer’s size, and youngest and oldest
recorded timestamps. The adaptation system’s respon-
siveness can be tuned by adjusting the circular buffer’s
size. Careful buffer size tuning can ensure quick, efficient
adaptation by avoiding oscillations triggered by outliers.
Event-based monitoring can quickly detect precipitous
load increases. (4) The inter-arrival rate estimate is then
fed as input to the switching logic that interpolates within
the piece-wise linear model to estimate tail latency for
each configuration under each model and thread pool
size. (5) µTune then transitions to the predicted lowest
latency threading model. µTune transitions by “parking”
the current threading model and “unparking” the newly
selected model using its framework abstraction and condi-
tion variable signaling, to (a) alternate between poll/block
socket reception, (b) process requests in-line or via prede-
fined task queues that dispatch requests to workers, or (c)
park/unpark various thread pools’ threads to handle new
requests. Successive asynchronous requests invoke the
(6) ProcessRequest(), (7) InvokeLeafAsync(), and
(10) FinalizeResponse() pipeline as dictated by the
new threading model. In-flight requests during transitions
are handled by the earlier model.

5 Implementation
Framework. µTune builds upon Google’s open-source
gRPC [18] library, which uses protocol buffers [33]—a
language-independent interface definition language and
wire format—to exchange RPCs. µTune’s mid-tier frame-
work uses gRPC’s C++ APIs: (1) Next() and Async-

Next() with a zero second timeout are used to respec-
tively block or poll for client requests, (2) RPCName()
and AsyncRPCName() are called via gRPC’s stub object
to send requests to leaves. µTune’s asynchronous models
explicitly track request state using finite state machines.
Asynchronous models’ response threads call Next() or
AsyncNext() for block- or poll-based receive.

µTune uses AsyncRPCName() to handle asynchronous
clients. For asynchronous µTune, leaves must use gRPC’s
Next() APIs to accept requests through explicitly man-
aged completion queues; for synchronous, the leaves can
use underlying synchronous gRPC abstractions.

Using µTune’s framework to build a new microservice
is simple, as only a few service specific functions must be
defined. We took ∼2 days for each service in Sec. 6.

Automatic load adaptation. We construct the piece-
wise linear model of tail latency by averaging five 30s
measurements of each threading model-thread pool pair at
varying loads. µTune’s load detection relies on a thread-
safe circular buffer built using scoped locks and condition
variables. The circular buffer capacity is tuned to quickly
detect load transients while avoiding oscillation. We use a
5-entry circular buffer in all experiments. µTune’s switch-
ing logic uses C++ atomics and condition variables to

182 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

switch among threading models seamlessly. µTune’s
adaptation code spans 2371 LOC of C++.

6 Experimental Setup
We characterize threading models in the context of four
information retrieval OLDI applications’ mid-tier and leaf
microservices adopted from µSuite [134].

HDSearch. HDSearch performs content-based image
similarity search by matching nearest neighbors (NN) in
a high-dimensional feature space. It serves a 500K image
corpus from Google’s Open Images data set [30]. Each
image is indexed via a 2048-dimensional feature vector
created using Google’s Inception V3 model [136] imple-
mented in TensorFlow [42]. HDSearch locates response
images whose feature vectors are near the query’s [65,96].

Mid-tier microservice. Modern k-NN libraries use in-
dexing structures, such as Locality-Sensitive Hash (LSH)
tables, kd-trees, or k-means, to reduce exponentially the
search space relative to brute-force linear search [44, 52,
75,85,110,129,137–139]. HDSearch’s mid-tier uses LSH
(an accurate and fast algorithm [45, 62, 67, 131]) via an
open-source k-NN library called Fast Library for Approx-
imate Nearest Neighbors (FLANN) [115]. The mid-tier’s
LSH tables store {leaf-server, point id} tuples indicating
feature vectors in the leaf’s data shards. While executing
RPCs, the mid-tier probes its in-memory LSH tables to
gather potential NNs. It then sends RPCs with potential
NN point IDs to the leaves. Leaves compute distances
to return a distance-sorted list. The mid-tier merges leaf
responses to return the k-NN across all shards.

Leaf microservice. The leaf’s distance computations
are embarrassingly parallel, and can be accelerated with
SIMD, multi-threading, and distributed computing [65].
We employ all techniques. We distribute distance compu-
tations over multiple leaves until the distance computation
time and network communication overheads are roughly
balanced. Hence, the mid-tier’s latency, and its ability
to fan out RPCs quickly, becomes critical: the mid-tier
microservice and network overheads limit the leaf mi-
croservice’s scalability. Leaves compare query feature
vectors against point lists received from the mid-tier using
the high-accuracy Euclidean distance metric [75].

Router. Router performs replication-based protocol
routing for scaling fault-tolerant key-value stores. Queries
are get or set requests. Gets contain keys, and return
the corresponding value. Sets contain key-value pairs,
and return a set completion acknowledgement. Get and
set query distributions mimic YCSB’s Workload A [59]
(1:1 ratio). Queries are from a "Twitter" data set [71].

Mid-tier microservice. The mid-tier uses Spooky-
Hash [8] to distribute keys uniformly across leaf mi-
croservers and route get and set queries. Router repli-
cates data for better availability, allowing the same data to
reside on several leaves. The mid-tier routes sets to all

replicas and distributes gets among replicas. The mid-
tier merges leaf responses and sends them to the client.

Leaf microservice. The leaf microserver builds a gRPC-
based communication wrapper around a memcached [72]
instance, exporting get and set RPCs.

Set Algebra. Set Algebra performs document
search by intersecting posting lists. It searches a cor-
pus of 4.3 million WikiText documents in Wikipedia [40]
sharded uniformly across leaf microservers, to identify
documents containing all search terms. Leaf microservers
index posting lists for each term in their shard of the
document corpus. Stop words determined by collection
frequency [149] are excluded from the term index to re-
duce leaf computation. Search queries (typically a series
of ≤ 10 words [4]) are synthetically generated based on
the probability of word occurrences in Wikipedia [40].

Mid-tier microservice. The mid-tier forwards client
queries containing search terms to the leaf microservers,
which then return intersected posting lists to the mid-tier
for their respective shards. The mid-tier aggregates the
per-shard posting lists and returns their union to the client.

Leaf microservice. Leaves look up posting lists for
all search terms and then intersect the sorted lists. The
resulting intersection is returned to the mid-tier.

Recommend. Recommend is a recommendation ser-
vice that performs user-based collaborative filtering on a
data set of 10K {user, item, rating} tuples—derived from
the MovieLens movie recommendation data set [78]—to
predict a user’s rating for an item. The data set is sharded
equally among leaves. Recommend uses a fast, flexible
open-source ML library called mlpack [60] to perform
collaborative filtering using matrix decomposition.

Mid-tier microservice. The mid-tier gets {user, item}
query pairs and forwards them to the leaves. Item ratings
sent by the leaves are averaged and sent to the client.

Leaf microservice. Leaves perform collaborative
filtering on a pre-composed matrix of {user,item,rating}
tuples. Rating predictions are then sent to the mid-tier.

We use a load generator that mimics many clients to
send queries to each mid-tier microservice under con-
trolled load scenarios. It operates in a closed-loop mode
while measuring peak sustainable throughput. We mea-
sure end-to-end (across all microservices) 99th% latency
by operating the load generator in open-loop mode with
Poisson inter-arrivals [57]. The load generator runs on
separate hardware and we validated that the load generator
and network bandwidth are not performance bottlenecks.

Our distributed system has a load generator, a mid-tier
microservice, and (1) four-way sharded leaf microservice
for HDSearch, Set Algebra, and Recommend and (2)
16-way sharded leaf microservice with three replicas for
Router. The hardware configuration of our measurement
setup is in Table 1. The leaf microservers run within

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 183

Table 1: Mid-tier microservice hardware specification.

Processor Intel Xeon E5-2699 v3 “Haswell”
Clock frequency 2.30 GHz

Cores / HW threads 36 / 72
DRAM 500 GB
Network 10Gbit/s

Linux kernel version 3.19.0

Linux tasksets limiting them to 20 logical cores for
HDSearch, Set Algebra, and Recommend and 5 logical
cores for Router. Each microservice runs on a dedicated
machine. The mid-tier is not CPU bound; saturation
throughput is limited by leaf server CPU.

To test the effectiveness of µTune’s load adaptation
system and measure its responsiveness to load changes,
we construct the following load generator scenarios. (1)
Load ramp: We increase offered load in discrete 30s steps
from 20 Queries Per Second (QPS) up to a microservice-
specific near-saturation load. (2) Flash crowd: We in-
crease load suddenly from 100 QPS to 8K/13K QPS. In
addition to performance metrics measured by our load
generator, we also report OS and microarchitectural statis-
tics. We use Linux’s perf utility to profile the number of
cache misses and context switches incurred by the mid-
tier microservice. We use Intel’s HITM (hit-Modified)
PEBS coherence event to detect true sharing of cache
lines; an increase in HITM events indicates a correspond-
ing increase in lock contention [109]. We measure thread
wakeup delays (reported as latency histograms) using the
BPF run queue (scheduler) latency tool [23].

7 Evaluation
We first characterize our threading models. We then com-
pare µTune to state-of-the-art adaptation systems.

7.1 Threading model characterization
We explore microservice threading models by first com-
paring synchronous vs. asynchronous performance. We
then separately explore trade-offs among the synchronous
and asynchronous models to report how the latency-
optimal threading model varies with load.

7.1.1 Synchronous vs. Asynchronous
The synchronous vs. asynchronous trade-off is one of
programmability vs. performance. It would be unusual
for a development team to construct both microservice
designs; if the team invests in the asynchronous design,
it will almost certainly be more performant. Still, our
performance study serves to quantify this gap.

Saturation throughput. We record saturation
throughput for the “best” threading model at saturation
(SDB/ADB). In Fig. 6, we see that the greater asyn-
chronous efficiency improves saturation throughput for
µTune’s asynchronous models, a 42% mean throughput

0"

5"

10"

15"

20"

25"

30"

HDSearch" Router" Set"Algebra" Recommend"

Workloads"

Synchronous" Asynchronous"

Sa
tu
ra
>o

n"
th
ro
ug
hp

ut
"(t
ho

us
an
ds
"o
f"Q

PS
)"

Figure 6: Sync. vs. async. saturation throughput: async. does
better by a mean 42%.

0"

0.5"

1"

1.5"

2"

64" 128" 256" 512" 1K" 2K" 4K" 8K" 16K"

Load"(Queries"Per"Second)"

HDSearch" Router" Set"Algebra" Recommend"

∞ ∞ ∞ ∞

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

ra
tio

 (s
yn

c:
as

yn
c)

Figure 7: Best sync:async tail latency ratio: async. is faster by a
mean 12% at sync.-achievable loads & infinitely faster at high
loads.

boost across all services. But, we spent 5× more effort to
build, debug, and tune the asynchronous models.

Tail latency. Latency cannot meaningfully be mea-
sured at saturation, as the offered load is unsustainable
and queuing delays grow unbounded. So, we compare tail
latencies at load levels from 64 QPS up to synchronous
saturation. In Fig. 7, we show the best sync-to-async ra-
tio of 99th% tail latency across all threading models and
thread pool sizes at each load level; we study inter-model
latencies later. We find asynchronous models improve tail
latency up to ∼ 1.3× (mean of ∼ 1.12×) over synchronous
models (for loads that synchronous models can sustain;
i.e., ≤ 8K). This substantial tail latency gap arises because
asynchronous models prevent long queuing delays.

7.1.2 Synchronous models
We study the tail latency vs. load trade-off for services
built with µTune’s synchronous models. We show a cross-
product of the threading taxonomy across loads for HD-
Search in Fig. 8. Each data point is the best 99th% tail
latency for that threading model and load based on an ex-
haustive thread pool size search. Points above the dashed

184 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0	

0.5	

1	

1.5	

2	

10	 100	 1000	 10000	

99
th
	 p
er
ce
n/

le
	 ta

il	
la
te
nc
y	
(m

s)
	

Load	 (Queries	 Per	 Second)	

SIB	 SIP	 SDB	 SDP	

satura/on	

QPS	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 10K	

SIB 1.4	 	 1.3 1.3 1 1 1 1.1 1.1 ∞

SIP 1 1 1 1.6 1.6 1.9 2.6 ∞ ∞

SDB 1.4 1.3 1.3 1.1 1.1 1.1 1 1 1

SDP 1.2 1.1 1 1 1 1 1.1 1.4 ∞

HDSearch

Figure 8: Graph: Latency vs. load trade-off for HDSearch sync.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

line are in saturation, where tail latencies are very high
and meaningless. The table reports the same graph data
with each load latency normalized to the best latency for
that load, which is highlighted in blue. We omit graphs
for other applications as they match the HDSearch trends.

We make the following observations:
SDB enables highest load. SDB, with a single net-

work thread and a large worker pool of 50 threads is the
only model that sustains peak loads (≥ 10K QPS). SDB
is best at high loads as (1) its worker pool has enough
concurrency so that leaf microservers, rather than the
mid-tier, pose the bottleneck; and (2) the single network
thread is enough to accept and dispatch the offered load.
SDB outperforms SDP at high load as polling consumes
CPU in fruitless poll loops. For example, at 10,000 QPS,
the mid-tier microserver receives one query every 100
microseconds. In SDP, poll loops are often shorter than
100 microseconds. Hence, some poll loops that do not
retrieve any requests are wasted work and may delay crit-
ical work scheduling, such as RPC response processing.
Under SDB, the CPU time wasted in empty poll loops
can instead be used to progress an ongoing request.

SIP has lowest latency at low load. While SDB sus-
tains peak loads, it is latency-suboptimal at low loads. SIP
offers 1.4× better low-load tail latency by avoiding up to
two OS thread wakeups relative to alternative models: (1)
network thread wakeups via interrupts on query arrivals,
and (2) worker wakeups for RPC dispatch. Work hand-off
among threads may cause OS-induced scheduling tails.

SDP is best at intermediate loads. SIP ceases being
the best model when the offered load grows too large for

0"

2"

4"

6"

8"

0"'
"1"

2"'
"3"

4"'
"7"

8"'
"15
"

16
"'"3
1"

32
"'"6
3"

64
"'"1
27
"

Wakeup"latency"distribu<on"(us"range)"

SIB" SIP" SDB" SDP"

N
o.
"o
f"t
hr
ea
d"
w
ak
e'
up

s"(
th
ou

sa
nd

s)
"

Figure 9: HDSearch sync. thread wakeups at 64 QPS: Block
incurs more wakeups.

0	

0.5	

1	

1.5	

2	

2.5	

	 HITMs	 	 Context	 switch	 Cache	 miss	

SIB	 SIP	 SDB	 SDP	

N
or
m
al
ize

d	
	 in
cr
ea
se
	 o
ve
r	 b

es
t	 m

od
el
	

OS	 and	 microarchitectural	 overheads	

Figure 10: Relative frequency of sync. contention, context
switches & cache misses at 10K QPS: SIP does worst.

one in-line thread to sustain. Adding more in-line polling
threads causes contention in the OS and RPC reception
code paths. Additional in-line blocking threads are less
disruptive, but SIB never outperforms SDP. By switching
to a dispatched model, a single network thread can still
accept the incoming RPCs, avoiding contention and local-
ity losses of running the gRPC [18] and network receive
stacks across many cores. The workers add sufficient
concurrency to sustain RPC and response processing. We
further note that SDP tail latencies at intermediate loads
are better than at low load, since there is better tempo-
ral locality and OS and networking performance tend to
improve due to batching effects in the networking stack.

OS and microarchitectural effects. We report OS
thread wakeup latency distributions for HDSearch syn-
chronous models at 64 QPS in Fig. 9. Although some
OS thread wakeups are fast (∼5 µs), blocking models
frequently incur 32-64 µs range wakeups. This data also
depicts the advantage of in-line over dispatched models
with respect to low-load worker wakeup costs.

Fig. 10 shows the relative frequency of true sharing
misses (HITM), context switches, and cache misses for
threading models at high load (10K QPS). These results
show why SIP fails to scale as load increases. SIP needs
multiple threads to sustain loads ≥ 512 QPS. Multiple
pollers contend pathologically on the network receive pro-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 185

0	

0.5	

1	

1.5	

2	

10	 100	 1000	 10000	

99
th
	 p
er
ce
n/

le
	 ta

il	
la
te
nc
y	
(m

s)
	

Load	 (Queries	 Per	 Second)	

AIB	 AIP	 ADB	 ADP	

satura/on	

QPS	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 20K	

AIB 1.3	 	 1.3 1.3 1.2 1.1 1.1 1.2 1.9 ∞

AIP 1 1 1 1 1 1 1.1 2.1 ∞

ADB 1.4 1.4 1.3 1.1 1.1 1.1 1.1 1 1

ADP 1.1 1.1 1.1 1 1 1 1 1.8 ∞

Set Algebra

Figure 11: Graph: Latency vs. load for Set Algebra async.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

cessing, incurring many sharing misses, context switches,
and cache misses. SIB in-line threads contend less as
they block, rather than poll. SDB and SDP exhibit similar
contention. However, SDB outperforms SDP, since SDP
incurs a mean ∼ 10% higher wasted CPU utilization.

Additional Tests. (1) We measured µTune with null
(empty) RPC handlers. Complete services incur higher
tails than null RPCs as mid-tier and leaf computations add
to tails. For null RPCs, SIP outperforms SDB by 1.57×
at low loads. (2) We measured HDSearch on another
hardware platform (Intel Xeon “Skylake” vs. “Haswell”).
We notice similar trends as on our primary Haswell plat-
form, with SIP outperforming SDB by 1.42× at low loads.
(3) We note that the median latency follows a similar trend,
but, with lower absolute values (e.g., HDSearch’s SIP out-
performs SDB by 1.26× at low load). We omit figures for
these tests as they match the reported HDSearch trends.
Threading performance gaps will be wider for faster ser-
vices (e.g., 200K QPS Memcached [26]) as slightest
OS/network overheads will become magnified [122].

7.1.3 Asynchronous models

We show results for Set Algebra’s asynchronous mod-
els in Fig. 11. As above, we omit figures for additional
services as they match Set Algebra trends. Broadly,
trends follow the synchronous models, but latencies are
markedly lower. We note the following differences:

Smaller thread pool sizes. Significantly smaller (≤ 4
threads) thread pool sizes are sufficient at various loads,
since asynchronous models capitalize on the available
concurrency by quickly moving on to successive requests.

0"
2"
4"
6"
8"
10"

64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K"

To
ta
l"t
hr
ea
ds
"

Load"(QPS)"for"each"threading"model"

Response"threads" Workers" Inline/network"threads"

AIB" AIP" ADB" ADP"

Set Algebra

Figure 12: Async. thread pools for best tails: Big pools contend.

0"
1"
2"
3"
4"
5"
6"

"HITMs" "Context"switch" Cache"miss"

OS"and"microarchitectural"overheads"

AIB" AIP" ADB" ADP"

N
or
m
al
ize

d"
in
cr
ea
se
"

ov
er
"A
DB

"
Figure 13: Async. Set Algebra’s relative frequency of con-
tention, context switches, & cache misses over best model at
peak load: AIP performs worst.

Fig. 12 shows Set Algebra’s asynchronous thread
pool sizes that achieve the best tails for each load level.
We find four threads enough to sustain high loads. Larger
thread pools deteriorate latency by contending for net-
work sockets or CPU resources. In contrast, SIB, SDB,
and SDP need many threads (as many as 50) to exploit
available concurrency.

AIP scales much better than SIP. AIP with just one
in-line and response thread can tolerate much higher load
(up to 4096 QPS) than SIP, since queuing delays engen-
dered by both the front-end network socket and leaf node
response sockets are avoided by the asynchronous design.

ADP scales worse than SDP. ADP with 4 worker and
response threads copes worse than SDP at loads ≥ 8192
QPS even though it does not have a large thread pool con-
tending for CPU (in contrast to SDP at high loads). This
design fails to scale since response threads contend on the
completion queue tied to leaf node response sockets.

OS and microarchitectural effects. Unlike SDP,
ADP incurs more context switches, caches misses, and
HITMs, due to response thread contention (Fig. 13).

7.2 Load adaptation
We next compare µTune’s load adaptation against state-
of-the-art baselines [43, 76, 97] for various load patterns.

7.2.1 Comparison to the state-of-the-art
We compare µTune’s run-time performance to state-of-
the-art adaptation techniques [43, 76, 97]. We find that

186 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

µTune offers better tail latency than these approaches.

Few-to-Many (FM) parallelism. FM [76] uses offline
profiling to vary parallelism during a query’s execution.
The FM scheduler decides when to add parallelism for
long-running queries and by how much, based on the
dynamic load that is observed every 5 ms. In consultation
with FM’s authors, we opt to treat a microservice as an
FM query, to create a fair performance analogy between
µTune and FM. In our FM setup, we mimic FM’s offline
profiling by building an offline interval table that notes
the software parallelism to add for varied loads in terms
of thread pool sizes. We use the peak load-sustaining
synchronous and asynchronous models (SDB and ADB).
During run-time, we track the mid-tier’s loads every 5 ms
and suitably vary SDB/ADB’s thread pool sizes. FM
varies only pool sizes (vs. µTune also varying threading
models), and we find that FM underperforms µTune.

Integrating Polling and Interrupts (IPI). Langen-
doen et al. [97] propose a user-level communication sys-
tem that adapts between poll- and interrupt-driven request
reception. The system initially uses interrupts. It starts to
poll when all threads are blocked. It reverts to interrupts
when a blocked thread becomes active. We study this sys-
tem for synchronous modes only; as its authors note [97],
it does not readily apply for asynchronous modes.

To implement this technique, we keep (1) a global
count of all threads, and (2) a shared atomic count of
blocked threads for the mid-tier. Before a thread becomes
blocked (e.g., invokes a synchronous call), it increments
the shared count and decrements it when it becomes active
(i.e., synchronous call returns). After revising the shared
count, a thread checks if the system’s active thread count
exceeds the machine’s logical core count. If higher, the
system blocks, otherwise, it shifts to polling. We find
that µTune outperforms this technique, as it considers
additional model dimensions (such as inline/dispatch), as
well as dynamically scales thread pools based on load.

Time window-Based Detection (TBD). Abdelzaher
et al. [43] periodically observe request arrival times in
fixed observation windows to track request rate. In our
setup, we replace µTune’s event-based detector with this
time-based detector. We pick 5 ms time-windows (like
FM) to track low loads and react quickly to load spikes.

We evaluate the tail latency exhibited by µTune across
all services, and compare it to these state-of-the-art ap-
proaches [43, 76, 97] for both steady-state and transient
loads. We examine µTune’s ability to pick a suitable
threading model and size thread pools for time-varying
load. We offer loads that differ from those used in train-
ing. We aim to study if µTune selects the best threading
model, as compared to an offline exhaustive search.

7.2.2 Steady-state adaptation
Fig. 14 shows µTune’s ability in converging to the best
threading model and thread pool size for steady-state
loads. Our test steps up and down through the displayed
load levels. We report the tail latency at each load aver-
aged over five trials. The SIP1, SDP1-20, and SDB1-50
bars are optimal threading configurations for some loads.
The nomenclature is the threading model followed by the
pool sizes, in the form model-network-worker-response.
The FM [76], Integrated Poll/Interrupt (IPI) [97], and
Time-Based Detection (TBD) [43] bars are the tail latency
of state-of-the-art systems. The red bars are µTune’s tail
latency; bars are labelled with the configuration µTune
chose.

In synchronous mode (Fig. 14 (top)), µTune first selects
an SIP model with a single thread, until load grows to
about 1K QPS, at which point it switches to SDP, and be-
gins ramping up the worker thread pool size. At 8K QPS,
it switches to SDB and continues growing the worker
thread pool, until it reaches 50 threads, which is sufficient
to meet the peak load the leaf microservice can sustain.

µTune boosts tail latency by up to 1.7× for HDSearch,
1.6× for Router, 1.4× for Set Algebra, and 1.5× for
Recommend (at 20 QPS) over SDB—the static model that
sustains peak loads. µTune boosts tail latency by a mean
1.3x over SDB across all loads and services. µTune also
outperforms all state-of-the-art [43, 76, 97] techniques
(except TBD) for at least one load level and never un-
derperforms. µTune outperforms FM by up to 1.3× for
HDSearch and Recommend, and 1.4× for Router and
Set Algebra under low loads, as FM only varies SDB’s
thread pool sizes and hence incurs high network poller and
worker wakeups. µTune outperforms the IPI approach
by up to 1.6× for HDSearch, 1.5× for Router and Rec-

ommend, and 1.4× for Set Algebra under low loads. At
low load, IPI polls with many threads (to sustain peak
load), succumbing to expensive contention. TBD does
as well as µTune as the requests mishandled during the
5 ms monitor window fall in tails greater than the 99th%
percentile that we monitor for 30s for each load level.

In asynchronous mode (Fig. 14 (bottom)), µTune again
initially selects an in-line poll model with small-sized
pools, transitioning to ADP and then ADB as load grows.
Four worker and response threads suffice for all loads.
We show that µTune outperforms static threading choices
and state-of-the-art techniques by up to 1.9× for at least
one load level.

Across all loads, µTune selects threading models and
thread pool sizes that perform within 5% of the best
model as determined by offline search. µTune incurs less
than 5% mean instruction overhead over the load-specific
“best” threading model, as depicted in Fig. 15. Hence, we
find our piece-wise linear model sufficient to make good
threading decisions. Note that µTune always prefers a

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 187

0"

0.5"

1"

1.5"

2"

20" 50" 100" 1K" 8K" 11K"

99
th
"p
er
ce
n1

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

SIP1% SDP1'20% SDB1'50% FM% IPI% TBD% μTune%%

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 15K	
Load	 (Queries	 Per	 Second)	

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 12K	
Load	 (Queries	 Per	 Second)	

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 13K	
Load	 (Queries	 Per	 Second)	

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 11K	
Load	 (Queries	 Per	 Second)	

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

(m
s)

∞ ∞ HDSearch ∞ ∞ ∞ Router ∞ ∞

∞ Set Algebra ∞ ∞ ∞ ∞ ∞
Recommend

S
D

P
1-

20

S
D

B
1-

50

S
D

B
1-

50

S
D

B
1-

50

S
D

B
1-

50

S
D

P
1-

20

S
D

P
1-

20

S
D

P
1-

20

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

(m
s)

S
IP

1

S
IP

1
S

IP
1

S
IP

1

S
IP

1

S
IP

1 S
D

B
1-

50

S
D

B
1-

50

S
IP

1

S
IP

1

S
IP

1

S
IP

1 S
D

B
1-

50

S
IP

1

S
IP

1 S
D

B
1-

50

0"

0.5"

1"

1.5"

2"

20" 50" 100" 1K" 8K" 14K"

99
th
"p
er
ce
n2

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

AIP1%0%1' ADP1%4%1' ADB1%4%4' FM' TBD' μTune''

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 13K	

Load	 (Queries	 Per	 Second)	

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 14K	

Load	 (Queries	 Per	 Second)	

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

(m
s)

3 Set Algebra
∞

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 13K	

Load	 (Queries	 Per	 Second)	

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

(m
s)

Router
∞

∞ 6.17
∞

HDSearch

0	
0.5	
1	

1.5	
2	

20	 50	 100	 1K	 8K	 14K	

Load	 (Queries	 Per	 Second)	

Recommend
∞

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
IP

1-
0-

1
A

IP
1-

0-
1

A
IP

1-
0-

1
A

IP
1-

0-
1 18.33

4.8 3.1

A
IP

1-
0-

1

A
IP

1-
0-

1

A
D

B
1-

4-
4

A
D

B
1-

4-
4

A
IP

1-
0-

1

A
IP

1-
0-

1

A
IP

1-
0-

1

A
IP

1-
0-

1

A
D

B
1-

4-
4

A
D

B
1-

4-
4

A
IP

1-
0-

1

A
IP

1-
0-

1

Figure 14: Synchrounous (top) & asynchronous (bottom) steady-state adaptation.

single thread interacting with the front-end socket. This
finding underscores the importance of maximizing local-
ity and avoiding contention on the RPC receive path.

7.2.3 Load transients

Table 2 indicates µTune’s response to load transients,
where the columns are a series of varied-duration load
levels. The rows are the 99th% tail latency for the models
between which µTune adapts in this scenario (SIP/AIP

188 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0"

2"

4"

6"

8"

10"

12"

20" 50" 100" 1K" 8K" 11K"

Sy
nc
."μ

Tu
ne

’s
"in
st
ru
c8
on

"o
ve
rh
ea
d"
(%

)"

Load"(Queries"Per"Second)"

HDSearch"
Router"
Set"Algebra"
Recommend"
Geomean"

<0.005"
<0.005"

<0.005" <0.005"

<0.005" <0.005"

Figure 15: Sync. µTune’s instruction overhead for steady-state
loads: less than 5% mean overhead incurred.

Synchronous Asynchronous

10
0

Q
PS

(0
-3

0s
)

8K
Q

PS
(3

0s
-3

1s
)

10
0

Q
PS

(3
1

-6
1s

)

10
0

Q
PS

(0
-3

0s
)

13
K

Q
PS

(3
0s

-3
1s

)

10
0

Q
PS

(3
1

-6
1s

)
SIP 0.99 >1s >1s AIP 0.95 >1s >1s
SDB 1.49 1.07 1.40 ADB 1.48 1.10 1.40
FM 1.35 13.00 1.32 FM 1.28 4.73 1.33
IPI 1.59 1.10 1.50 IPI NA NA NA

H
D
S
e
a
r
c
h

TBD 1.03 8.69 1.02 TBD 1.06 2.63 1.08
µTune 1.01 1.09 0.99 µTune 0.98 1.13 0.96

SIP 1.10 >1s >1s AIP 1.01 >1s >1s
SDB 1.31 0.83 1.36 ADB 1.35 1.13 1.31
FM 1.33 9.40 1.40 FM 1.30 12.95 1.30
IPI 1.4 1.10 1.38 IPI NA NA NA

R
o
u
t
e
r

TBD 1.13 4.51 1.11 TBD 1.03 6.24 1.01
µTune 1.12 0.88 1.13 µTune 0.99 1.02 0.98

SIP 0.95 >1s >1s AIP 1.04 >1s >1s
SDB 1.30 0.92 1.32 ADB 1.26 0.99 1.23
FM 1.30 12.00 1.25 FM 1.28 4.14 1.27
IPI 1.20 0.94 1.12 IPI NA NA NA
TBD 1.00 8.45 1.03 TBD 1.09 6.62 1.1

S
e
t

A
l
g
e
b
r
a

µTune 0.97 0.92 1.03 µTune 1.06 1.1 1.06

SIP 1.00 >1s >1s AIP 1.03 >1s >1s
SDB 1.26 0.96 1.22 ADB 1.37 1.30 1.32
FM 1.23 >1s >1s FM 1.28 8.61 1.20
IPI 1.13 1.02 1.13 IPI NA NA NA
TBD 1.02 4.96 1.03 TBD 1.06 6.00 1.07

R
e
c
o
m
m
e
n
d

µTune 1.00 1.00 1.00 µTune 1.06 1.39 1.04

Table 2: 99th% tail latency (ms) for load transients.

and SDB/ADB), state-of-the-art [43, 76, 97] techniques,
and µTune. The key step in this scenario is the 8K/13K
QPS load level, which lasts only 1s. We pick spikes of 8K
QPS and 13K QPS for synchronous and asynchronous as
these loads are SIP and AIP saturation levels, respectively.

We find that the in-line poll models accumulate a large
backlog during the transient as they saturate, and thus
perform poorly even during successive low loads. FM
and TBD incur high transient tail latencies as they allow
requests during the 5 ms load detection window to be
handled by sub-optimal threading choices. FM saturates
at 8K QPS for Recommend since the small SDB thread
pool size opted by FM at 100 QPS causes unbounded
queuing during the load monitoring window. IPI works
only for synchronous and performs poorly at low loads as

its fixed-size thread pool leads to polling contention. We
show that µTune detects the transient and transitions from
SIP/AIP to SDB/ADB fast enough to avoid accumulating
a backlog that affects tail latency. Once the flash crowd
subsides, µTune transitions back to SIP/AIP, avoiding the
latency penalty SDB/ADB suffer at low load.

8 Discussion
We briefly discuss open questions and µTune limitations.

Offline training. µTune uses offline training to build
a piece-wise linear model. This phase might be removed
by analyzing dynamically OS and hardware signals, such
as context switches, thread wakeups, queue depths, cache
misses, and lock contention, to switch threading models.
Designing heuristics to switch optimally based on such
run-time metrics remains an open question; our perfor-
mance characterization can help guide their development.

Thread pool sizing. µTune tunes thread pool sizes
using a piece-wise linear model. µTune differs from prior
thread pool adaptation systems [76, 86, 93] in that it also
tunes threading models. Some of these systems use more
sophisticated tuning heuristics, but we did not observe
opportunity for further improvement in our microservices.

CPU cost of polling. µTune polls at low loads to avoid
thread wakeups. Polling can be costly as it wastes CPU
time in fruitless poll loops. However, as most operators
over-provision CPU to sustain high loads [130], when
load is low, spare CPU time is typically available [79].

µTune’s asynchronous framework. Asynchronous
RPC state must be maintained in thread-safe structures,
which is challenging. More library/language support
might simplify building asynchronous microservices with
µTune. We leave such support to future work.

Comparison with optimized systems that use
kernel-bypass, multi-queue NICs, etc. It may be
interesting to study the implications of optimized
systems [53, 87, 91, 103, 121, 122] that incorporate kernel-
bypass, multi-queue NICs, etc., on threading models
and µTune. Multi-queue NICs may improve polling
scalability; multiple network pollers currently contend
for the underlying gRPC [18] queues under µTune.
OS-bypass may further increase the application threading
model’s importance; for example, it may magnify the
trade-off between in-line and dispatch RPC execution,
as OS-bypass eliminates latency and thread hops in the
OS TCP/IP stack, shifting the break-even point to favor
in-line execution for longer RPCs. However, in this paper,
we have limited our scope to study designs that can
layer upon (unmodified) gRPC [18]; we defer studies that
require extensive gRPC [18] changes (or an alternative
reliable transport) to future work.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 189

9 Related Work

We discuss several categories of related work.

Web server architectures. Web servers can have
(a) thread-per-connection [119], (b) event-driven [120],
(c) thread-per-request [84], or (d) thread-pool architec-
tures [104]. Pai et al. [119] build thread-per-connection
servers as multi-threaded processes. Knot [145] is a
thread-per-connection non-blocking server. In contrast,
µTune is a thread-per-request thread-pool architecture
that scales better for microservices [104]. The Single Pro-
cess Event-Driven (SPED) [119] architecture operates on
asynchronous ready sockets. In contrast, µTune supports
both synchronous and asynchronous I/O. The SYmmet-
ric Multi-Process Event-Driven (SYMPED) [120] archi-
tecture runs many processes as SPED servers via con-
text switches. The Staged Event-Driven Architecture
(SEDA) [148] joins event-driven stages via queues. A
stage’s thread pool is driven by a resource controller.
Apart from considering synchronous and asynchronous
I/O like prior works [69,83,84,120,146,148], µTune also
studies a full microservice threading model taxonomy.
gRPC-based systems such as Envoy [13] or Finagle [16]
act as load balancers or use a single threading model.

Software techniques for tail latency: Prior
works [84, 148] note that monolithic service software
designs can significantly impact performance. But, micro-
second–scale OS and network overheads that dominate in
µTune’s regime do not manifest in these slower services.
Some works improve web server software via software
pattern re-use [127, 128], caching file systems [84], or
varying parallelism [76], all of which are orthogonal to
the questions we investigate. Kapoor et al. [91] also
note that OS and network overheads impact short-running
cloud services, but, their kernel bypass solution may not
apply for all contexts (e.g., a shared cloud infrastructure).

Parallelization to reduce latency: Several prior
works [54, 61, 89, 94, 99, 104, 124, 135, 147] reduce tails
via parallelization. Others [47, 70, 80, 112] improve me-
dians by adaptively sharing resources. Prior works use
prediction [86,93], hardware parallelism [76], or data par-
allelism [73] to reduce monolithic services’ tail latency.
Lee et al. [99] use offline analysis (like µTune) to tune
thread pools. We study microservice threading, and vary
threading models altogether. But, we build on prior works’
thread pool sizing insights.

Hardware mechanisms for tail latency: Several
other prior works improve leaf service tail latency via
better co-location [102], voltage boosting [82, 92], or ap-
plying heterogeneity in multi-cores [77]. But, they do
not study microservice tail latency effects engendered by
software threading, OS, or network.

10 Conclusion
Prior works study monolithic OLDI services, where
microsecond-scale overheads are negligible. The rapid ad-
vent of faster I/O and low-latency microservices calls for
analyzing threading effects for the microsecond regime.
In this paper, we presented a structured threading model
taxonomy for microservices. We identified different mod-
els’ performance effects under diverse load. We proposed
µTune—a novel framework that abstracts microservice
threading from application code and automatically adapts
to offered load. We show that selecting load-optimal
threading models can improve tail latency by up to 1.9x.

11 Acknowledgement
We thank our shepherd, Dr. Hakim Weatherspoon, and
the anonymous reviewers for their valuable feedback. We
thank Amlan Nayak for creating the HDSearch data set,
and Neha Agarwal for reviewing µTune’s code base.

We acknowledge Ricardo Bianchini, Manos Kaprit-
sos, Mosharaf Chowdhury, Baris Kasikci, David Devec-
sery, Md Haque, Aasheesh Kolli, Karin Strauss, Inigo
Goiri, Geoffrey Blake, Joel Emer, Gabriel Loh, A. V.
Madhavapeddy, Zahra Tarkhani, and Eric Chung for their
insightful suggestions that helped improve this work.

We are especially grateful to Vaibhav Gogte and Ani-
mesh Jain for their input in shaping the µTune concept.
We thank P.R. Sriraman, Rajee Sriraman, Amrit Gopal,
Akshay Sriraman, Vidushi Goyal, and Amritha Varshini
for proof-reading our draft.

This work was supported by the Center for Applica-
tions Driving Architectures (ADA), one of six centers of
JUMP, a Semiconductor Research Corporation program
co-sponsored by DARPA. This work was also supported
by NSF Grant IIS1539011 and gifts from Intel.

12 References

[1] Adopting microservices at netflix: Lessons for architectural
design. https://www.nginx.com/blog/microservices-
at-netflix-architectural-best-practices/.

[2] Aerospike. https://www.aerospike.com/docs/client/
java/usage/async/index.html.

[3] Apache http server project. https://httpd.apache.org/.

[4] Average number of search terms for online search queries in the
United States as of August 2017. https:
//www.statista.com/statistics/269740/number-of-
search-terms-in-internet-research-in-the-us/.

[5] Azure Synchronous I/O antipattern.
https://docs.microsoft.com/en-
us/azure/architecture/resiliency/high-
availability-azure-applications.

[6] The biggest thing amazon got right: The platform.
https://gigaom.com/2011/10/12/419-the-biggest-
thing-amazon-got-right-the-platform/.

[7] BLPOP key timeout. https://redis.io/commands/blpop.

[8] Bob Jenkins. SpookyHash: a 128-bit noncryptographic hash.
http://burtleburtle.net/bob/hash/spooky.html.

190 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[9] Building products at soundcloud: Dealing with the monolith.
https://developers.soundcloud.com/blog/building-
products-at-soundcloud-part-1-dealing-with-the-
monolith.

[10] Building Scalable and Resilient Web Applications on Google
Cloud Platform.
https://cloud.google.com/solutions/scalable-and-
resilient-apps.

[11] Celery: Distributed Task Queue.
http://www.celeryproject.org/.

[12] Chasing the bottleneck: True story about fighting thread
contention in your code.
https://blogs.mulesoft.com/biz/news/chasing-the-
bottleneck-true-story-about-fighting-thread-
contention-in-your-code/.

[13] Envoy. https://www.envoyproxy.io/.

[14] Facebook Thrift.
https://github.com/facebook/fbthrift.

[15] Fighting spam with haskell.
https://code.facebook.com/posts/745068642270222/
fighting-spam-with-haskell/.

[16] Finagle. https:
//twitter.github.io/finagle/guide/index.html.

[17] From a Monolith to Microservices + REST: the Evolution of
LinkedIn’s Service Architecture.
https://www.infoq.com/presentations/linkedin-
microservices-urn.

[18] gRPC. https://github.com/heathermiller/dist-
prog-book/blob/master/chapter/1/gRPC.md.

[19] Handling 1 Million Requests per Minute with Go.
http://marcio.io/2015/07/handling-1-million-
requests-per-minute-with-golang/.

[20] Improve Application Performance With SwingWorker in Java
SE 6. http://www.oracle.com/technetwork/articles/
javase/swingworker-137249.html.

[21] Latency is everywhere and it costs you sales - how to crush it.
http://highscalability.com/blog/2009/7/25/
latency-iseverywhere-and-it-costs-you-sales-
how-to-crush-it.html.

[22] Let’s look at Dispatch Timeout Handling in WebSphere
Application Server for z/OS. https:
//www.ibm.com/developerworks/community/blogs/
aimsupport/entry/dispatch_timeout_handling_in_
websphere_application_server_for_zos?lang=en.

[23] Linux bcc/BPF Run Queue (Scheduler) Latency.
http://www.brendangregg.com/blog/2016-10-
08/linux-bcc-runqlat.html.

[24] LPOP key. https://redis.io/commands/lpop.

[25] Mcrouter. https://github.com/facebook/mcrouter.

[26] Memcached performance. https://github.com/
memcached/memcached/wiki/Performance.

[27] Microsoft Azure Blob Storage.
https://azure.microsoft.com/en-
us/services/storage/blobs/.

[28] mongoDB. https://www.mongodb.com/.

[29] Myrocks: A space- and write-optimized MySQL database.
https://code.facebook.com/posts/190251048047090/
myrocks-a-space-and-write-optimized-mysql-
database/.

[30] OpenImages: A public dataset for large-scale multi-label and
multi-class image classification.
https://github.com/openimages.

[31] Pokemon go now the biggest mobile game in US history.
http://www.cnbc.com/2016/07/13/pokemon-go-now-
the-biggest-mobile-game-in-us-history.html.

[32] Programmer’s Guide, Release 2.0.0.

https://www.intel.com/content/dam/www/public/us/
en/documents/guides/dpdk-programmers-guide.pdf.

[33] Protocol Buffers.
https://developers.google.com/protocol-buffers/.

[34] Redis Replication.
https://redis.io/topics/replication.

[35] Resque. https://github.com/defunkt/resque.

[36] RQ. http://python-rq.org/.

[37] Scaling Gilt: from Monolithic Ruby Application to Distributed
Scala Micro-Services Architecture.
https://www.infoq.com/presentations/scale-gilt.

[38] Setting Up Internal Load Balancing.
https://cloud.google.com/compute/docs/load-
balancing/internal/.

[39] What is microservices architecture?
https://smartbear.com/learn/api-design/what-are-
microservices/.

[40] Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Plagiarism&oldid=5139350.

[41] Workers inside unit tests.
http://python-rq.org/docs/testing/.

[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke,
V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensorflow:
Large-scale machine learning on heterogeneous distributed
systems. Computing Research Repository, 2016.

[43] T. F. Abdelzaher and N. Bhatti. Web server QoS management by
adaptive content delivery. In International Workshop on Quality
of Service, 1999.

[44] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In IEEE
Symposium on Foundations of Computer Science, 2006.

[45] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and
L. Schmidt. Practical and Optimal LSH for Angular Distance. In
Advances in Neural Information Processing Systems. 2015.

[46] I. Arapakis, X. Bai, and B. B. Cambazoglu. Impact of Response
Latency on User Behavior in Web Search. In International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 2014.

[47] N. Bansal, K. Dhamdhere, J. Könemann, and A. Sinha.
Non-clairvoyant scheduling for minimizing mean slowdown.
Algorithmica, 2004.

[48] M. Barhamgi, D. Benslimane, and B. Medjahed. A query
rewriting approach for web service composition. IEEE
Transactions on Services Computing, 2010.

[49] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. Attack
of the Killer Microseconds. Communications of the ACM, 2017.

[50] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet:
The google cluster architecture. In IEEE Micro, 2003.

[51] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 2007.

[52] M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-tuning
indexes for similarity search. In International conference on
World Wide Web, 2005.

[53] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. IX: A Protected Dataplane Operating System
for High Throughput and Low Latency. In USENIX Conference
on Operating Systems Design and Implementation, 2014.

[54] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D.
Antonopoulos, and M. Curtis-Maury. Runtime scheduling of
dynamic parallelism on accelerator-based multi-core systems.
Parallel Computing, 2007.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 191

[55] A. Bouch, N. Bhatti, and A. Kuchinsky. Quality is in the eye of
the beholder: Meeting users’ requirements for internet quality of
service. In ACM Conference on Human Factors and Computing
Systems, 2000.

[56] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. C. Li, et al.
TAO: Facebook’s Distributed Data Store for the Social Graph. In
USENIX Annual Technical Conference, 2013.

[57] J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web server
performance modeling using an m/g/1/k* ps queue. In
International Conference on Telecommunications. IEEE.

[58] J. L. Carlson. Redis in Action. 2013.

[59] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB. In
ACM Symposium on Cloud Computing, 2010.

[60] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram,
N. A. Mehta, and A. G. Gray. MLPACK: A scalable C++
machine learning library. Journal of Machine Learning
Research, 2013.

[61] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online power-performance adaptation of
multithreaded programs using hardware event-based prediction.
In Annual International conference on Supercomputing, 2006.

[62] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive Hashing Scheme Based on P-stable
Distributions. In Annual Symposium on Computational
Geometry, 2004.

[63] J. Dean and L. A. Barroso. The Tail at Scale. Communications of
the ACM, 2013.

[64] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM, 2008.

[65] C. C. Del Mundo, V. T. Lee, L. Ceze, and M. Oskin. NCAM:
Near-Data Processing for Nearest Neighbor Search. In
International Symposium on Memory Systems, 2015.

[66] N. Dmitry and S.-S. Manfred. On micro-services architecture.
International Journal of Open Information Technologies, 2014.

[67] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li.
Modeling LSH for performance tuning. In ACM conference on
Information and knowledge management, 2008.

[68] D. Ersoz, M. S. Yousif, and C. R. Das. Characterizing network
traffic in a cluster-based, multi-tier data center. In International
Conference on Distributed Computing Systems, 2007.

[69] Q. Fan and Q. Wang. Performance comparison of web servers
with different architectures: a case study using high concurrency
workload. In IEEE Workshop on Hot Topics in Web Systems and
Technologies, 2015.

[70] D. G. Feitelson. A survey of scheduling in multiprogrammed
parallel systems. IBM Research Division, 1994.

[71] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi. Clearing the Clouds: A Study of Emerging Scale-out
Workloads on Modern Hardware. In International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2012.

[72] B. Fitzpatrick. Distributed Caching with Memcached. Linux J.,
2004.

[73] E. Frachtenberg. Reducing query latencies in web search using
fine-grained parallelism. World Wide Web, 2009.

[74] B. Furht and A. Escalante. Handbook of cloud computing.
Springer, 2010.

[75] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High
Dimensions via Hashing. In International Conference on Very
Large Data Bases, 1999.

[76] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and
K. S. McKinley. Few-to-Many: Incremental Parallelism for
Reducing Tail Latency in Interactive Services. In International
Conference on Architectural Support for Programming

Languages and Operating Systems, 2015.

[77] M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini,
and K. S. McKinley. Exploiting Heterogeneity for Tail Latency
and Energy Efficiency. In IEEE/ACM International Symposium
on Microarchitecture, 2017.

[78] F. M. Harper and J. A. Konstan. The Movielens Datasets:
History and Context. ACM Tranactions on Interactive Intelligent
Systems, 2015.

[79] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, et al. Applied
Machine Learning at Facebook: A Datacenter Infrastructure
Perspective. In IEEE International Symposium on High
Performance Computer Architecture, 2018.

[80] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient online
nonclairvoyant adaptive scheduling. IEEE Transactions on
Parallel and Distributed Systems, 2008.

[81] E. N. Herness, R. J. High, and J. R. McGee. Websphere
Application Server: A foundation for on demand computing.
IBM Systems Journal, 2004.

[82] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner,
T. Wenisch, L. Tang, J. Mars, and R. Dreslinski. Adrenaline:
Pinpointing and Reining in Tail Queries with Quick Voltage
Boosting. In International Symposium on High Performance
Computer Architecture, 2015.

[83] J. Hu, I. Pyarali, and D. C. Schmidt. Applying the proactor
pattern to high-performance web servers. In International
Conference on Parallel and Distributed Computing and Systems,
1998.

[84] J. C. Hu and D. C. Schmidt. JAWS: A Framework for
High-performance Web Servers. In In Domain-Specific
Application Frameworks: Frameworks Experience by Industry,
1999.

[85] P. Indyk and R. Motwani. Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality. In ACM
Symposium on Theory of Computing, 1998.

[86] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox,
and S. Rixner. Predictive Parallelization: Taming Tail Latencies
in Web Search. In International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2014.

[87] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park. mTCP: A Highly Scalable User-level TCP Stack for
Multicore Systems. In USENIX Conference on Networked
Systems Design and Implementation, 2014.

[88] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry.
Decoupling Contention Management from Scheduling. In
Architectural Support for Programming Languages and
Operating Systems, 2010.

[89] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive execution
techniques for SMT multiprocessor architectures. In ACM
SIGPLAN symposium on Principles and practice of parallel
programming, 2005.

[90] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks. Tradeoffs
between power management and tail latency in warehouse-scale
applications. In IEEE International Symposium on Workload
Characterization, 2014.

[91] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat.
Chronos: Predictable low latency for data center applications. In
ACM Symposium on Cloud Computing, 2012.

[92] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez.
Rubik: Fast analytical power management for latency-critical
systems. In International Symposium on Microarchitecture,
2015.

[93] S. Kim, Y. He, S.-w. Hwang, S. Elnikety, and S. Choi.
Delayed-Dynamic-Selective (DDS) Prediction for Reducing
Extreme Tail Latency in Web Search. In ACM International
Conference on Web Search and Data Mining, 2015.

[94] W. Ko, M. Yankelevsky, D. S. Nikolopoulos, and C. D.
Polychronopoulos. Effective cross-platform, multilevel
parallelism via dynamic adaptive execution. In Parallel and

192 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Distributed Processing Symposium, 2001.

[95] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical Guide to
Controlled Experiments on the Web: Listen to Your Customers
Not to the Hippo. In International Conference on Knowledge
Discovery and Data Mining, 2007.

[96] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for
approximate nearest neighbor in high dimensional spaces. SIAM
Journal on Computing, 2000.

[97] K. Langendoen, J. Romein, R. Bhoedjang, and H. Bal.
Integrating polling, interrupts, and thread management. In
Symposium on the Frontiers of Massively Parallel Computing,
1996.

[98] P.-A. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent
mid-tier database caching in SQL server. In International
Conference on Data Engineering, 2004.

[99] J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread Tailor:
Dynamically Weaving Threads Together for Efficient, Adaptive
Parallel Applications. In International Symposium on Computer
Architecture, 2010.

[100] A. Lesyuk. Mastering Redmine. 2013.

[101] C. Li, C. Ding, and K. Shen. Quantifying the cost of context
switch. In Workshop on Experimental computer science, 2007.

[102] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales of
the Tail: Hardware, OS, and Application-level Sources of Tail
Latency. In ACM Symposium on Cloud Computing, 2014.

[103] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
Holistic Approach to Fast In-memory Key-value Storage. In
USENIX Conference on Networked Systems Design and
Implementation, 2014.

[104] Y. Ling, T. Mullen, and X. Lin. Analysis of Optimal Thread Pool
Size. SIGOPS Operating Systems Review, 2000.

[105] D. Liu and R. Deters. The Reverse C10K Problem for
Server-Side Mashups. In International Conference on
Service-Oriented Computing Workshops, 2008.

[106] P. M. LiVecchi. Performance enhancements for threaded servers,
2004. US Patent 6,823,515.

[107] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In International Symposium on
Computer Architecture, 2014.

[108] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: Improving Resource Efficiency at Scale.
In International Symposium on Computer Architecture, 2015.

[109] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J.
Newburn, and J. Devietti. LASER: Light, Accurate Sharing
dEtection and Repair. In International Symposium on High
Performance Computer Architecture, 2016.

[110] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe LSH: Efficient Indexing for High-dimensional
Similarity Search. In International Conference on Very Large
Data Bases, 2007.

[111] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in
Action, Second Edition: Covers Apache Lucene 3.0. 2010.

[112] C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor
Allocation Policy for Multiprogrammed Shared-memory
Multiprocessors. ACM Transactions on Computer Systems, 1993.

[113] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch. Power Management of Online Data-intensive Services.
In International Symposium on Computer Architecture, 2011.

[114] G. Mühl, L. Fiege, and P. Pietzuch. Distributed event-based
systems. 2006.

[115] M. Muja and D. G. Lowe. Scalable Nearest Neighbor
Algorithms for High Dimensional Data. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2014.

[116] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen.
Microservice Architecture: Aligning Principles, Practices, and
Culture. 2016.

[117] R. M. Needham. Denial of Service. In ACM Conference on
Computer and Communications Security, 1993.

[118] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, and P. Saab. Scaling
Memcache at Facebook. In USENIX Symposium on Networked
Systems Design and Implementation, 2013.

[119] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient
and portable Web server. In USENIX Annual Technical
Conference, 1999.

[120] D. Pariag, T. Brecht, A. S. Harji, P. A. Buhr, A. Shukla, and D. R.
Cheriton. Comparing the performance of web server
architectures. In European Conference on Computer Systems,
2007.

[121] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The operating system is the
control plane. ACM Transactions on Computer Systems, 2016.

[122] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achieving Low
Tail Latency for Microsecond-scale Networked Tasks. In
Symposium on Operating Systems Principles, 2017.

[123] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion.
Energy Proportionality and Workload Consolidation for
Latency-critical Applications. In ACM Symposium on Cloud
Computing, 2015.

[124] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Thread reinforcer:
Dynamically determining number of threads via OS level
monitoring. In IEEE International Symposium on Workload
Characterization, 2011.

[125] D. R. Raymond and S. F. Midkiff. Denial-of-service in wireless
sensor networks: Attacks and defenses. IEEE Pervasive
Computing, 2008.

[126] R. Rojas-Cessa, Y. Kaymak, and Z. Dong. Schemes for fast
transmission of flows in data center networks. IEEE
Communications Surveys & Tutorials, 2015.

[127] D. Schmidt and P. Stephenson. Experience using design patterns
to evolve communication software across diverse OS platforms.
In European Conference on Object-Oriented Programming,
1995.

[128] D. C. Schmidt and C. Cleeland. Applying patterns to develop
extensible ORB middleware. IEEE Communications Magazine,
1999.

[129] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation
with parameter-sensitive hashing. In IEEE International
Conference on Computer Vision, 2003.

[130] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and J. S.
Chase. Balance of power: Dynamic thermal management for
internet data centers. IEEE Internet Computing, 2005.

[131] M. Slaney and M. Casey. Locality-sensitive hashing for finding
nearest neighbors. IEEE Signal Processing Magazine, 2008.

[132] S. M. Specht and R. B. Lee. Distributed Denial of Service:
Taxonomies of Attacks, Tools, and Countermeasures. In ISCA
International Conference on Parallel and Distributed Computing
(and Communications) Systems, 2004.

[133] A. Sriraman, S. Liu, S. Gunbay, S. Su, and T. F. Wenisch.
Deconstructing the Tail at Scale Effect Across Network
Protocols. The Annual Workshop on Duplicating,
Deconstructing, and Debunking, 2016.

[134] A. Sriraman and T. F. Wenisch. µSuite: A Benchmark Suite for
Microservices. In IEEE International Symposium on Workload
Characterization, 2018.

[135] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven
threading: power-efficient and high-performance execution of
multi-threaded workloads on CMPs. In International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2008.

[136] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the Inception Architecture for Computer Vision. In
IEEE Conference on Computer Vision and Pattern Recognition,
2016.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 193

[137] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in
high dimensional nearest neighbor search. In ACM SIGMOD
International Conference on Management of data, 2009.

[138] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and accurate
nearest neighbor and closest pair search in high-dimensional
space. ACM Transactions on Database Systems, 2010.

[139] K. Terasawa and Y. Tanaka. Spherical LSH for approximate
nearest neighbor search on unit hypersphere. In Workshop on
Algorithms and Data Structures, 2007.

[140] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to build
high-performance network programs. IEEE Internet Computing,
2010.

[141] D. Tsafrir. The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops). In Workshop on
Experimental computer science, 2007.

[142] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware
Datacenter TCP (D2TCP). In ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, 2012.

[143] B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar.
Timetrader: Exploiting Latency Tail to Save Datacenter Energy
for Online Search. In International Symposium on
Microarchitecture, 2015.

[144] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca,
R. Casallas, and S. Gil. Evaluating the monolithic and the
microservice architecture pattern to deploy web applications in
the cloud. In Computing Colombian Conference, 2015.

[145] J. R. Von Behren, J. Condit, and E. A. Brewer. Why Events Are
a Bad Idea (for High-Concurrency Servers). In Hot Topics in
Operating Systems, 2003.

[146] Q. Wang, C.-A. Lai, Y. Kanemasa, S. Zhang, and C. Pu. A Study
of Long-Tail Latency in n-Tier Systems: RPC vs. Asynchronous
Invocations. In International Conference on Distributed
Computing Systems, 2017.

[147] Z. Wang and M. F. O’Boyle. Mapping Parallelism to
Multi-cores: A Machine Learning Based Approach. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2009.

[148] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for
Well-conditioned, Scalable Internet Services. In ACM
Symposium on Operating Systems Principles, 2001.

[149] W. J. Wilbur and K. Sirotkin. The automatic identification of
stop words. Journal of information science, 1992.

[150] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
Never Than Late: Meeting Deadlines in Datacenter Networks. In
ACM SIGCOMM Conference, 2011.

[151] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill:
Attributing the Source of Tail Latency Through Precise Load
Testing and Statistical Inference. In International Symposium on
Computer Architecture, 2016.

194 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

