

μSuite & μTune: Auto-Tuned Threading for OLDI Microservices

Akshitha Sriraman, Thomas F. Wenisch University of Michigan

On-Line Data Intensive (OLDI) Services

Must meet stringent Service Level Objectives (SLOs)

OLDI: From Monoliths to Microservices

Tail Latency

- SLOs are impacted by the 99th+% (tail) latency
- Negatively affects user experience

Goal: Minimize microservice tail latency

Threading Effects on Tails for Monoliths

Our focus: Sub-ms overheads due to threading design

Spurious context switch

Threading-induced OS/network overheads are minor for monoliths

Threading Effects on Microservice Tails

Threading can significantly impact microservice SLOs

Mid-tier Faces More Threading Overheads

Threading overheads must be characterized for *mid-tier* microservices

RPC layer interactions dominate computation

Need for a Microservice Benchmark Suite

Closed-source
[Ayers '18]

Monolithic Architectures
[Ferdman '12]

Only one workload

Only leaf nodes [Lo '14]

Not representative

Domain-specific [Hauswald '15]

No open-source benchmark sufficiently represents microservices

Contributions

μSuite: Benchmark suite of OLDI services composed of microservices [1]

Taxonomy of threading models: Implications of threading designs [2]

μTune: Load adaptation system to tune threading models & improve tails [2]

Achieve **1.9x** tail latency speedup over state-of-the-art adaptations [2]

[1] A. Sriraman, T.F. Wenisch. µSuite: A Benchmark Suite for Microservices. International Symposium on Workload Characterization (IISWC) 2018.

[2] A. Sriraman, T.F. Wenisch. μTune: Auto-Tuned Threading for OLDI Microservices Operating Systems Design and Implementation **(OSDI) 2018**.

Outline

- μSuite: Description of services & microservices
- Show how μSuite facilitates future research

- A taxonomy of threading models
 - Characterize threading effects on microservice tails
- μTune: Dynamic load adaptation system that improves tail latency
- Evaluation

10

μSuite

HDSearch

Leaf compute bound

Set Algebra

Variability in leaf compute

Router

Variability in scale-out

Recommend

Variability in mid-tier compute

Benchmark 1: HDSearch

- Content-based search for image similarity
- Leaf compute bound mid-tier has high threading overheads

HDSearch: Locality Sensitive Hashing

Reduces nearest neighbor computation time

μSuite HDSearch

Router

Set Alg.

Recommend

Taxonomy

μTune

Evaluation

17

Other µSuite Services

Benchmark 2: Router

- Fault tolerance by replication
- GET:SET asymmetry
- Varied scale-out per request

Benchmark 3: Set Algebra

- Inverted index of posting lists
- Large variability in leaf compute

Benchmark 4: Recommend

- Collaborative filtering
- Mid-tier does little work

µSuite Can Facilitate Future Research

Contributions

μSuite: Benchmark suite of OLDI services composed of microservices [1]

Taxonomy of threading models: Implications of threading designs [2]

μTune: Load adaptation system to tune threading models & improve tails [2]

Achieve 1.9x tail latency speedup over state-of-the-art adaptations [2]

[1] A. Sriraman, T.F. Wenisch. µSuite: A Benchmark Suite for Microservices. International Symposium on Workload Characterization (IISWC) 2018.

[2] A. Sriraman, T.F. Wenisch. μTune: Auto-Tuned Threading for OLDI Microservices Operating Systems Design and Implementation **(OSDI) 2018**.

Threading Designs

- Taxonomy of threading models
- Threading dimensions:
 - Block vs. Poll
 - In-Line vs. Dispatch
 - Synchronous vs. Asynchronous

Threading Dimensions: Block vs. Poll

Block or Interrupt-Driven

Front-End Mid-Tier Leaf

NW socket

| Request | Shock>

- Low cost: avoids fruitless poll-loops
- High thread wakeup latency

Poll

- Low latency: avoids thread wakeups
- Many poll threads cause contention

Threading Dimensions: In-Line vs. Dispatch

Front-End Mid-Tier Leaf Request In-Line thread

- Better for short queries: no hand-off
- Many in-line threads may contend

Dispatch

- Better network poller locality
- Harder to program: thread-safety

Threading Dimensions: Sync. vs. Async.

Threading Dimensions: Thread Pools

A Taxonomy of Threading Models

Synchronous

Asynchronous

	Block	Poll
In-line	SIB	SIP
Dispatch	SDB	SDP

	Block	Poll
In-line	AIB	AIP
Dispatch	ADB	ADP

Characterize varying thread pool sizes for each functionality

In-line Poll has lowest low-load latency: Avoids thread wakeup delays

In-Line Poll faces contention; Dispatch Poll with one network poller is best

μTune

Dispatch Block is best at high load as it does not waste CPU

μTune

Need for Automatic Load Adaptation: µTune

- Threading choice can significantly affect tail latency
- Threading latency trade-offs are not obvious
- Most software face latency penalties due to static threading

Opportunity: Exploit trade-offs among threading models at run-time

Contributions

μSuite: Benchmark suite of OLDI services composed of microservices [1]

Taxonomy of threading models: Implications of threading designs [2]

μTune: Load adaptation s/m to tune threading models & improve tails [2]

Achieve 1.9x tail latency speedup over state-of-the-art adaptations [2]

[1] A. Sriraman, T.F. Wenisch. µSuite: A Benchmark Suite for Microservices. International Symposium on Workload Characterization (IISWC) 2018.

[2] A. Sriraman, T.F. Wenisch. μTune: Auto-Tuned Threading for OLDI Microservices Operating Systems Design and Implementation **(OSDI) 2018**.

μTune

- Load adaptation: Vary threading model & pool size at run-time
- Abstract threading model boiler-plate code from RPC code

Simple interface: Developer defines only three functions

33

μTune: Goals & Challenges

Simple interface

Quick load change detection

Fast threading model switches

Scale thread pools

μTune System Design: Auto-Tuner

Dynamically picks threading model & pool sizes based on load

Experimental Setup

- μSuite: Three service tiers:
 - Load generator, a mid-tier, 4 or 16 leaf microservers
- State-of-the-art load generation mechanisms [Zhang '16]:
 - Closed-loop: Saturation throughput
 - Open-loop (arrivals from exponential distribution): Latency
- Study μTune's adaptation in two load scenarios:
 - Steady-state
 - Transients

Evaluation: µTune's Load Adaptation

Converges to best threading model & pool sizes to improve tails by up to 1.9x

Conclusion

- μSuite benchmark suite of microservices
 - μSuite can facilitate future research

- Taxonomy of threading models
 - Optimal threading model is load dependent
- μTune threading model framework + load adaptation system

A. Sriraman, T.F. Wenisch. μTune: Auto-Tuned Threading for OLDI Microservices Operating Systems Design and Implementation (OSDI) 2018.

A. Sriraman, T.F. Wenisch. μSuite: A Benchmark Suite for Microservices. International Symposium on Workload Characterization (IISWC) 2018.

μSuite & μTune: Auto-Tuned Threading for OLDI Microservices

Akshitha Sriraman, Thomas F. Wenisch

https://github.com/wenischlab/MicroSuite

https://github.com/wenischlab/MicroTune

BACKUP SLIDES

Instruction Overhead

Sync. μTune's instruction overhead for steady-state load: <5% mean overhead

Comparison With State-of-the-Art

- Few-to-Many Parallelism:
 - Adapting thread pool sizes
- Langendoen et al.
 - Adapting poll vs. block
- Abdelzaher et al.
 - Time window-based load detection

Load Transients

	Synchronous					Asynchronous				
		100 QPS (0 - 30s)	8K QPS (30s - 31s)	100 QPS (31 - 61s)		100 QPS (0 - 30s)	13K QPS (30s - 31s)	100 QPS (31 - 61s)		
HDS Fairch	SIP SDB FM ĪPĪ TBD µTune	0.99 1.49 1.35 1.59 1.03 1.01	>1s -1.07 -13.00 -1.10 8.69 1.09	>1s -1.40 -1.32 -1.50 -1.02 -0.99	AIP ADB FM IPI TBD µTune	0.95 1.48 1.28 NA 1.06 0.98	>1s 1.10 4.73 NA 2.63 1.13	>1s 1.40 1.33 NA 1.08 0.96		
Router	SIP SDB FM IPI TBD µTune	1.10 1.31 1.33 - 1.4 - 1.13 1.12	>1s 0.83 9.40 -1.10 -4.51 0.88	>1s 1.36 1.40 -1.38 -1.11 1.13	AIP ADB FM IPI TBD µTune	1.01 1.35 1.30 NA 1.03 0.99	>1s 1.13 12.95 NA - 6.24 1.02	>1s 1.31 1.30 NA 1.01 0.98	 -	
Set Algebra	SIP SDB FM IPI TBD µTune	0.95 1.30 1.30 1.20 1.00 0.97	>1s 0.92 12.00 0.94 8.45 0.92	>1s 1.32 1.25 1.12 1.03 1.03	AIP ADB FM IPI TBD µTune	1.04 1.26 1.28 NA 1.09	>1s 0.99 4.14 NA 6.62	>1s 1.23 1.27 NA 1.1 1.06		
Recommend	SIP SDB FM IPI TBD µTune	1.00 1.26 1.23 1.13 1.02 1.00	>1s 0.96 >1s 1.02 4.96 1.00	>1s 1.22 >1s 1.13 1.03 1.00	AIP ADB FM IPI TBD µTune	1.03 1.37 1.28 NA 1.06 1.06	>1s 1.30 8.61 NA 6.00 1.39	>1s 1.32 1.20 NA 1.07 1.04		

Thread Pool Sizes

Sync vs. Async: Saturation Throughput

Sync. Vs. Async.: Tail Latency

Thread Wakeup Delays

OS & Microarchitectural Effects

Async. OS & Microarchitectural Effects

Router

- Routes key-value stores to Memcached
- Replication-based protocol routing for fault-tolerance
 - SETs go to multiple leaves
 - GETs go to a single leaf

- More scalable a subset of leaves are contacted
 - May face more threading overheads due to GET/SET asymmetry

Router: Operation

Making Router a Benchmark

- Query set:
 - Set of {key, value} pairs from a Twitter data set [Ferdman '12]
 - GET:SET distributions mimic YCSB's workload A (50:50)

Set Algebra

- Document retrieval for web search
 - Set intersections on posting lists
- Inverted index:
 - Map of term to all doc IDs containing term

ID	Term	Doc. IDs
1	Data	1, 2, 3, 4
3	Butterfly	1, 2, 6, 7
3	Rainbow	2, 4, 5
4	Unicorn	2

- Large variability in leaves' compute
 - Helps study overheads with short & long requests

Set Algebra: Operation

Term	Doc ID					
Butterfly	1 3					
Rainbow	<u>3</u>					
Unicorn	1 <u>3</u>					
Inverted index						

Set intersection

Term	Doc ID				
Butterfly	2 8				
Unicorn	<u>4</u>				
Rainbow	4 6				

Inverted index

Making Set Algebra a Benchmark

- Data set: inverted index of documents
 - 4.3M documents from Wikipedia: 10 GB
 - Prepared sharded inverted index corpus
 - Test set: Synthetically created using Wikipedia's word probabilities
 - Query: uniformly randomly selected set of <= 10 terms

Recommend

- Predicts user ratings for specific items
 - Uses collaborative filtering

- Mid-Tier does minimal work on the request path
 - Helps study unmasked OS and network effects

Recommend: Operation

Making Recommend a Benchmark

- Dataset: {user, item, rating} tuples
 - MovieLens movie recommendation data set [Harper '15]
 - Prepared sharded sparse user-item rating matrix
 - Test set of {user, item} query pairs from MovieLens [Harper '15]

Characterizing the Threading Taxonomy

- SIP has lowest latency at low load
 - Avoid two kinds of thread wakeups
- SDP is best at intermediate loads
 - Avoids in-line polling thread contention
- SDB enables highest load
 - Single network thread, many workers

QPS	64	128	256	512	1024	2048	4096	8192	10K
SIB	1.4	1.3	1.3	1	1	1	1.1	1.1	∞
SIP	1	1	1	1.6	1.6	1.9	2.6	∞	∞
SDB	1.4	1.3	1.3	1.1	1.1	1.1	1	1	1
SDP	1.2	1.1	1	1	1	1	1.1	1.4	∞

No single threading model is optimal at all loads

Comparison With State-of-the-Art Adaptation

- Few-to-Many (FM) parallelism [Haque '15]
 - Uses offline interval table to select thread pool sizes
- Integrating Polling and Interrupts (IPI) [Langendoen '96]
 - Polls when threads are blocked
 - Uses interrupts when blocked thread returns
- Time-window Based Detection (TBD) [Abdelzaher '99]
 - Track request arrivals in fixed observation time windows

μTune should outperform as it considers both threading models & pool sizes

Sync. Vs. Async.: Saturation Throughput

Async. models are more performant although harder to program

