uSuite & puTune: Auto-Tuned Threading
for OLDI Microservices

Akshitha Sriraman, Thomas F. Wenisch

University of Michigan

Qda

Applications Driving Architectures

On-Line Data Intensive (OLDI) Services

g Ie cat gifs
best cat gifs
cat gifs funny
cute cat gifs animated
cat gifs reddit
funny cat animated gifs
cat typing gif

E Must meet stringent Service Level Objectives (SLOs)

OLDI: From Monoliths to Microservices

Monolithic service Microservices
O @ o || A ||l @
/\
@ ® @ . 4
Scaling Scaling

/°A'V°A'\ [AAA}RPC
S = - J = - Y,) (
p _ _ [O|o]|o]] @]|e]

o e o e | [

e ® e ® [0 L 2R IR 2 @ e I}
\ VRN J S

From >100ms SLOs to sub-ms SLOs

Tail Latency

¥ The
2 long tail

7

Latency Latency

e SLOs are impacted by the 99"+% (tail) latency
e Negatively affects user experience

Goal: Minimize microservice tail latency

Threading Effects on Tails for Monoliths

e Qur focus: Sub-ms overheads due to threading design

Blocking Polling A) ! (‘@-@ ,,, D) /'a 4 \:

0 'l y

Lock contention Thread wakeups Spurious context switch

@ Threading-induced OS/network overheads are minor for monoliths

Threading Effects on Microservice Tails

e Threading can significantly impact microservice SLOs

Monolith Microservice

% 300ms g 100us

2 S = 4

20 s 20 s
_ _
% % 20%!
300.02ms 120us

Prior threading conclusions must be revisited for microservices

Mid-tier Faces More Threading Overheads

Front-End Microserver Mid-Tier Microserver

> Leaf Microserver 1

e Mid-tier — subject to more threading overheads

Leaf Microserver 2
— Manages RPC fan-out to many leaves

— RPC layer interactions dominate computation

Threading overheads must be characterized for mid-tier microservices

M 7

Need for a Microservice Benchmark Suite

k! " 7 s Yo » °,-t~:£'

Not representative

Closed-source Only one workload Zhu ‘16]

[Ayers ‘18] [Hsu “15]

Monolithic

Architectures Only leaf nodes Domain-specific
[Ferdman ‘12] [Lo “14] [Hauswald “15]

No open-source benchmark sufficiently represents microservices

Contributions

uSuite: Benchmark suite of OLDI services composed of microservices 1]

\
Taxonomy of threading models: Implications of threading designs [?!

\
uTune: Load adaptation system to tune threading models & improve tails 2]

\
Achieve 1.9x tail latency speedup over state-of-the-art adaptations [?

[1] A. Sriraman, T.F. Wenisch. uSuite: A Benchmark Suite for Microservices.
International Symposium on Workload Characterization (ISWC) 2018.

[2] A. Sriraman, T.F. Wenisch. uTune: Auto-Tuned Threading for OLDI Microservices
E Operating Systems Design and Implementation (OSDI) 2018.

Outline

e uSuite: Description of services & microservices
e Show how puSuite facilitates future research

e A taxonomy of threading models

— Characterize threading effects on microservice tails
e uTune: Dynamic load adaptation system that improves tail latency
e Evaluation

E uSuite HDSearch Router Set Alg. Recommend Taxonomy uyTune Evaluation 10

=

-

)

(°)

{

'

HDSearch -
l@l

F

¥

Leaf compute bound

Set Algebra ' \:)/3, Recommend

m Variability in leaf compute Variability in mid-tier compute

uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 11

O
Benchmark 1: HDSearch ;gep
e Content-based search for image similarity
e |Leaf compute bound - mid-tier has high threading overheads

A
> ® . _________ ® N ‘\ —>
A K = # nearest ,
£ ® / 0O® | ® neighbors y U
2 AN o 17, HDSearch
P N i P AN Py
o 0 " 8
®

v

Feature X2

@ uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 12

HDSearch: Locality Sensitive Hashing‘;i";af;’J

Reduces nearest neighbor computation time
Key Potentially near-by point IDs

uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 13

HDSearch: Operation

Point IDs

Front-End Microserver Mid-Tier Microserver

Query

Leaf Microserver 1

Point IDs

O Key Leaf id X Point ID

Query
feature vector 2

===

@
I

Query

Leaf Microserver 2

@0 Ie0 o0
|
|

OX@) :.. OXC
|
|

©C® |00 00

@ uSuite HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation 14

..
HDS 0 i -4

earch: Operation &
° <

p ‘ ~!t

.Po:t Izs A Leaf.ldata set shard
Front-End Mid-Tier @ O
Microserver Microserver ® °
O o C ©
Query Leaf
Microserver 1 O O (@)
O
Leaf
Microserver 2 Leaf 2 data set shard

Point IDs @ O

@00 ° e
o
©e ° o
0] @)
@ "
uSuite HDSearch Router

© >
Set Ale. Recommend Taxonomy

uTune Evaluation 15

HDSearch: Operation ap

e
Front-End Mid-Tier

Microserver

A Leaf 1’s candidates
Microserver

@
Query Leaf

Microserver 1

o

S

\ Leaf 2’s candidates
Leaf

Microserver 2

M
uSuite HDSearch Router

Set Alg.

>
Recommend Taxonomy

uTune Evaluation 16

()

v"/"¢

HDSearch: Operation

Front-End Mid-Tier
Microserver Microserver

Leaf
Microserver 1

‘ Query

1-NN
response PP Leaf

Microserver 2

1-NN
responses

@ uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 17

Other uSuite Services

\ \ \ \

KX KK
()
.
Benchmark 2: Router Benchmark 3: Set Algebra Benchmark 4: Recommend
* Fault tolerance by replication ¢ Inverted index of posting lists * Collaborative filtering
* GET:SET asymmetry e Large variability in leaf compute <+ Mid-tier does little work

* Varied scale-out per request

@ 18

uSuite Can Facilitate Future Research

Contributions

uSuite: Benchmark suite of OLDI services composed of microservices 1]

\

Taxonomy of threading models: Implications of threading designs 2]

\

uTune: Load adaptation system to tune threading models & improve tails 2]

\

Achieve 1.9x tail latency speedup over state-of-the-art adaptations 1%

[1] A. Sriraman, T.F. Wenisch. uSuite: A Benchmark Suite for Microservices.
International Symposium on Workload Characterization (ISWC) 2018.

[2] A. Sriraman, T.F. Wenisch. uTune: Auto-Tuned Threading for OLDI Microservices
Operating Systems Design and Implementation (OSDI) 2018.

20

Threading Designs

e Taxonomy of threading models
e Threading dimensions:

— Block vs. Poll

— In-Line vs. Dispatch
— Synchronous vs. Asynchronous

E uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 21

Threading Dimensions: Block vs. Poll

Block or Interrupt-Driven Poll
Front-End Mid-Tier Leaf Front-End Mid-Tier Leaf
* NW socket Py NW socket
Request I <block> Request <poll>
e Low cost: avoids fruitless poll-loops e Low latency: avoids thread wakeups
e High thread wakeup latency e Many poll threads cause contention

E uSuite HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation

279

Threading Dimensions: In-Line vs. Dispatch

In-Line Dispatch
Front-End Mid-Tier Leaf Front-End Mid-Tier Leaf
4 4 Network poller thread
Request N Request N
l In-Line thread Dispatch
Task queue

: Worker notified
e Better for short queries: no hand-off Orier notne

e Many in-line threads may contend . Better network poller locality

e Harder to program: thread-safety

E uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 93

Threading Dimensions: Sync. vs. Async.

Synchronous i Asynchronous
Front-End Mid-Tier Leaf | Front-End Mid-Tier Leaf
Request V Network poller thread i Request : Network poller thread
e /.’\.\ i 7 ‘./‘\‘
.- Task queue |
Worker notified | : Worker notified \
v | : _ |
‘;Synchronous>§ i NW (client) socket'". "~-—"Asynchronous >
'.| Compute | Resp. thread: :.-'5
; : <block/poll> N
Response VP ! Work it .
< 4 j VVOrker awaits . Response Compute

'~._" notification

Synchronous & asynchronous designs are built separately
@ uSuite

HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation 91

Threading Dimensions: Thread Pools

Synchronous i Asynchronous
Front-End Mid-Tier Leaf | Front-End Mid-Tier Leaf
i (1) : 4 (1)
Request V Network poller threadi Request V Network poller thread
> : ” 77N\
2) ..- Task queue i 2) |
Worker ‘. | Worker \
v | S. l |
| Synchronous : : (3) ~-—Asynchronous
. ' : Response thread: 4V
Compute S
l | <block/poll>
Response v I y : Ye—
< L Worker awaits ! Respgnse f Compute
~._ notification : < "

@ uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation »c

A Taxonomy of Threading Models

Synchronous Asynchronous
B e | o B e | -
| In-line 1| _SIB__ SIp In-line AlB AP
Dispatch SDB SDP Dispatch ADB ADP

Characterize varying thread pool sizes for each functionality
@ uSuite

HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation 26

Latency Tradeoffs Across Threading Models

! saturation
E
5 .
§ 15 A X In-line Block
i_c ® In-line Poll
8 1
k3] M Dispatch Block
B
[.
]
3 o5 A A Dispatch Poll
S
< HDSearch: Sync.
(@) O T T 1
(@)
10 100 1000 10000

Load (Queries Per Second)

@ In-line Poll has lowest low-load latency: Avoids thread wakeup delays

uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 27

Latency Tradeoffs Across Threading Models

! saturation
)
§ 15 - x X In-line Block
i_c A A x ® In-line Poll
2 - e ® o
% B Dispatch Block
[.
]
3 o5 A A Dispatch Poll
S
c HDSearch: Sync.
5 O T T 1
(@)

10 100 1000 10000

Load (Queries Per Second)

@ In-Line Poll faces contention; Dispatch Poll with one network poller is best

uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 28

Latency Tradeoffs Across Threading Models

! saturation
g 27
= ® oo
g 15 - x X, In-line Block
= A) X ® In-line Poll
AR e * X
% X B Dispatch Block
[.
Q
3 o5 A A Dispatch Poll
S
c HDSearch: Sync.
5 O T T 1
(@)}

10 100 1000 10000

Load (Queries Per Second)

Dispatch Block is best at high load as it does not waste CPU
@ uSuite

HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation 29

Latency Tradeoffs Across Threading Models
saturation @I‘

In-line Block

e

No smgle threading model works best at aII loads

-

A Dispatch Poll

O
U

99th percentile

HDSearch: Sync.

(@]

100 1000 10000

Load (Queries Per Second)

[HEN
O

E uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 30

Need for Automatic Load Adaptation: uTune

e Threading choice can significantly affect tail latency
e Threading latency trade-offs are not obvious
e Most software face latency penalties due to static threading

Opportunity: Exploit trade-offs among threading models at run-time

@ uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 31

Contributions

uSuite: Benchmark suite of OLDI services composed of microservices 1]

\

Taxonomy of threading models: Implications of threading designs [?!

\

MTune: Load adaptation s/m to tune threading models & improve tails [2

\

Achieve 1.9x tail latency speedup over state-of-the-art adaptations [2!

[1] A. Sriraman, T.F. Wenisch. uSuite: A Benchmark Suite for Microservices.
International Symposium on Workload Characterization (ISWC) 2018.

[2] A. Sriraman, T.F. Wenisch. uTune: Auto-Tuned Threading for OLDI Microservices
Operating Systems Design and Implementation (OSDI) 2018.

32

ulune

e |Load adaptation: Vary threading model & pool size at run-time
e Abstract threading model boiler-plate code from RPC code

App layer | Microservice functionality: ProcessReq(), InvokelLeaf(), FinalizeResp()

uTune KLTune automatic load adaptation system

Network layer RPC layer

Simple interface: Developer defines only three functions

@ uSuite HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation 33

uTune: Goals & Challenges

Simple Quick load change
interface e s detection
threading
framework
Scale

Fast threading

model switches thread pools

E uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 34

uTune System Design: Auto-Tuner

e Dynamically picks threading model & pool sizes based on load

Offline
training

| ‘?\

Online:
Request

from _

front-end

Create piecewise
linear model

Request rate

compute

>

Request rate Best TM Ideal no. of threads
0-128 QPS SIP In-line: one
4096 — 8192 QPS SDB NW poller: one, Workers: many
(eg. 50), Resp. threads: many
7 e s s S
v
Send to . Switch to loaf
switching | |\@) bestT™M& | _ _ _ _ _ _ gt o e >
logic | 8" thread pool
sizes

E uSuite HDSearch Router Set Alg. Recommend

Taxonomy uTune Evaluation 35

Experimental Setup

e LSuite: Three service tiers:
— Load generator, a mid-tier, 4 or 16 leaf microservers
e State-of-the-art load generation mechanisms [hang '16].
— Closed-loop: Saturation throughput
— Open-loop (arrivals from exponential distribution): Latency
e Study pTune’s adaptation in two load scenarios:

— Steady-state
— Transients

E uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 36

Evaluation: uTune S Load Adaptatlon

B In-LinePoll B Dispatch Poll

A saturation

. 1.9x

o RN
o Ul =~ U1 N
1

20 50 100 1K 8K 14K

99t percentile tail latency (ms)

Load (Queries Per Second)

Converges to best threading model & pool sizes to improve tails by up to 1.9x

37

A

M

Conclusion

uSuite — benchmark suite of microservices
— uSuite can facilitate future research

Taxonomy of threading models
— Optimal threading model is load dependent

uTune —threading model framework + load adaptation system

. Sriraman, T.F. Wenisch. uTune: Auto-Tuned Threading for OLDI Microservices
Operating Systems Design and Implementation (OSDI) 2018.

A. Sriraman, T.F. Wenisch. uSuite: A Benchmark Suite for Microservices.
International Symposium on Workload Characterization (IISWC) 2018.

38

uSuite & puTune: Auto-Tuned Threading
for OLDI Microservices

Akshitha Sriraman, Thomas F. Wenisch

https://github.com/wenischlab/MicroSuite

https://github.com/wenischlab/MicroTune

39

BACKUP SLIDES

40

Instruction Overhead

& B HDSearch

§ 12 4 @ERouter

<= O

= 10 4 Set Algebra

3 O Recommend

S 8 B Geomean

5 6 7 <0.005 <0.005

o

24 <0.005

£ <0.005 <0.005 <0.005
» 2

T S I

2 0

= 20 50 100 1K 8K 11K
(S

% Load (Queries Per Second)

Sync. uTune’s instruction overhead for steady-state load: <5% mean overhead

M

41

M

Comparison With State-of-the-Art

e Few-to-Many Parallelism:
— Adapting thread pool sizes

e Langendoen et al.
— Adapting poll vs. block
e Abdelzaher et al.

— Time window-based load detection

42

Load Transients

Synchronous Asynchronous

v~) n~ 22I2 P2

58 £7 5C 58 o7 5G

o L o — o ML o

Sec ¥& =g Se =& =g

. SIP 0.99 >1s >1s AIP 0.95 >1s >l1s
o_SDB__ 149 107 _ 140 _ ADB__ 148 110 __ 140 _
g FM___ 135 1300 132 FM__ 128 473 133,

® IPI 1.59 1.10 1.50 1P1 NA NA NA

T TBD 1.03 8.69 1.02 TBD 1.06 2.63 1.08

uTune 1.01 1.09 099 uTune 0.98 1.13 0.96

SIP 1.10 >1s >1s AIP 1.01 >1s >1s

N SDB 1.31 0.83 1.36 ADB 1.35 1.13 1.31

© FM 1.33 9.40 1.40 FM 1.30 12.95 1.30
g__IPI____T.Z___1.'10___KSE___IPF__NA___NK__N'A__]

STTBD T T 13T 7451 T1ATC T TTBD T 03T T 624 T TTOTT T
uTune 1.12 0.88 1.13 uTune 0.99 1.02 0.98

o SIP 0.95 >1s >1s AIP 1.04 >1s >1s
8 SDB 1.30 0.92 1.32 ADB 1.26 0.99 1.23
f‘? FM 1.30 12.00 1.25 FM 1.28 4.14 1.27
< IPI 1.20 0.94 1.12 1PI NA NA NA

®
N uTune 0.97 0.92 1.03 UuTune 1.06 1.1 1.06

SIP 1.00 >1s >1s AIP 1.03 >1s >1s
SDB 1.26 0.96 1.22 ADB 1.37 1.30 1.32
FM 1.23 >1s >1s FM 1.28 8.61 1.20
1PI 1.13 1.02 1.13 1PI NA NA NA

TBD 1.02 4.96 1.03 TBD 1.06 6.00 1.07
uTune 1.00 1.00 1.00 uTune 1.06 1.39 1.04

Recommend

Total threads

=
o

o N B O

Thread Pool Sizes

M Response threads O Workers ™ Inline/network threads

Set Algebra
iy ‘ ‘ ‘ | [‘ ‘ ‘
S O ¥ ¥ ¥ § O ¥ ¥ ¥ § O ¥ ¥ ¥ F O ¥ ¥ ¥
O N =" <O O N A < O O N A < O O WN AT O
(@] N o (@] N N N N
AIB AIP ADB ADP

Load (QPS) for each threading model

44

Sync vs. Async: Saturation Throughput

g Synchronous B Asynchronous
s 30 7

(%]

2 25 A

a

3 20 T

=

= 15 7

>

Q.

& 10 T

3

£ 7]

.g 0 T T T

@ HDSearch Router Set Algebra Recommend
>

3 Workloads

45

Sync. Vs. Async.: Tail Latency

) M HDSearch B Router OSet Algebra U Recommend
S 00
(%’ A o0 ©O
e A TH
o | [
c

>,

L 27

)

B

> 1.5 1

8)

=

3

& 17

E

2 05 1

=

@

~

g 0° }
< 64 128 256 512 1K 2K 4K 8K 16K
»

o

Load (Queries Per Second)

46

Thread Wakeup Delays

= 87

©

s

4 6 - SIB ==SIP =—SDB SDP

£

8 4 -

>

)

v

£ 2

s "_J

©

g i

= 0 T T T T T |
5 AL IR T
d Q ’\, b‘ q) '\'Q)/ f;;l// b"
P ©

Wakeup latency distribution (us range)

47

OS & Microarchitectural Effects

@siB B Sip B SDB 0 sbp
2.5 7

1.5 1

0.5 1

T

HITMs Context switch Cache miss

Normalized increase over best model
=

OS and microarchitectural overheads

48

Async. OS & Microarchitectural Effects

c - EAIB M AIP B ADB COADP
5 -
()]
£ 8 31
ST -
2%
o O 1
=0 i
(@] O T
=

HITMs Context switch Cache miss

Router

e Routes key-value stores to Memcached
e Replication-based protocol routing for fault-tolerance

— SETs go to multiple leaves
— GETs go to a single leaf

e More scalable —a subset of leaves are contacted
— May face more threading overheads due to GET/SET asymmetry

@ uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 50

Router: Operation

Front-End Microserver Mid-Tier Microserver

Leaf Microserver 1 Memcached

SET query:
Name = Tom

SpookyHash N

Leaf Microserver 1

Leaf Microserver 2

@ uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 51

Making Router a Benchmark

e Query set:
— Set of {key, value} pairs from a Twitter data set [Ferdman 1]
— GET:SET distributions mimic YCSB’s workload A (50:50)

@ uSuite HDSearch Router Set Ale. Recommend Taxonomy uTune Evaluation 52

Set Algebra

e Document retrieval for web search
— Set intersections on posting lists

Term Doc. IDs

Data 1,2 3,4
Butterfly | 1, 2,6, 7
Rainbow | 2,4,5

Unicorn 2

e |nverted index:
— Map of term to all doc IDs containing term

A W | W[

e large variability in leaves’ compute
— Helps study overheads with short & long requests

@ uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 53

Set Algebra: Operation

Term Doc ID

Front-End Microserver Mid-Tier Microserver

3 Search query:
“rainbow unicorn”

Leaf Microserver 1

<

Inverted index
Set union Set intersection

Term Doc ID

Leaf Microserver 2

Inverted index

m uSuite HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation 54

Making Set Algebra a Benchmark

e Data set: inverted index of documents
— 4.3M documents from Wikipedia: 10 GB
— Prepared sharded inverted index corpus
— Test set: Synthetically created using Wikipedia’s word probabilities
— Query: uniformly randomly selected set of <= 10 terms

E uSuite HDSearch Router Set Alge. Recommend Taxonomy uTune Evaluation 55

Recommend

e Predicts user ratings for specific items
— Uses collaborative filtering

e Mid-Tier does minimal work on the request path
— Helps study unmasked OS and network effects

@ uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 56

Front-End Microserver

Mid-Tier Microserver

57'*7 Leaf Microserver 1

QEIMES

Search query:
“User: Tom;
ltem: The Hobbit”

QBBI

THE BATTLE OF THE FIVE Al RMIES

Average

¥

& 2

Collaborative filtering

§1E §
5

2

&£
N3 1

%<.‘

=
& 5

Leaf Microserver 2 {2 1 2

4

Collaborative filtering

@ uSuite HDSearch Router SetAlg. Recommend Taxonomy uTune Evaluation

57

Making Recommend a Benchmark

e Dataset: {user, item, rating} tuples
— MovielLens movie recommendation data set [Harper '15]
— Prepared sharded sparse user-item rating matrix
— Test set of {user, item} query pairs from MovielLens [Harper 1]

E uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 58

Characterizing the Threading Taxonomy

A saturation .;
e SIP has lowest latency at low load s 2 D
— Avoid two kinds of thread wakeups HRER . x -
= A Uom
. . . E | s ° ol X
e SDP is best at intermediate loads s ¢ L
— Avoids in-line polling thread contention g 05 7 Hpsearch
é X SIB @ S|P B SDB A SDP

e SDB enables highest load " 10

— Single network thread, many workers

100 1000 10000

Load (Queries Per Second)

Qps

64 128 256 512 1024 2048 4096 8192 10K

SIB
SIP
SDB
SDP

14 13 13 1 1 1 11 11 e
1 1 1 16 16 19 26 o oo
14 13 13 11 11 11 1 1 1
1.2 11 1 1 1 1 11 14 oo

No single threading model is optimal at all loads

@ uSuite

HDSearch Router SetAlg. Recommend

Taxonomy uTune Evaluation

59

Comparison With State-of-the-Art Adaptation

e Few-to-Many (FM) parallelism [Haaue 15]
— Uses offline interval table to select thread pool sizes
e Integrating Polling and Interrupts (IPI) [Langendoen “96]

— Polls when threads are blocked
— Uses interrupts when blocked thread returns

e Time-window Based Detection (TBD) [Abdelzaher "53]

— Track request arrivals in fixed observation time windows

uTune should outperform as it considers both threading models & pool sizes

@ uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 60

Sync. Vs Async.: Saturation Throughput

40,000 QPS

| Google Search [www.internetlivestats.com/google-searchstatistics]
30 1

1 Sync.
2> B Async.
20 T
15
10

5
0 .
HDS

Router Set Alg.

Saturation throughput - thousands of QPS

Workloads
Async. models are more performant although harder to program
@ uSuite HDSearch Router Set Alg. Recommend Taxonomy uTune Evaluation 61

