
μSuite	
  &	
  μTune:	
  Auto-­‐Tuned	
  Threading	
  
for	
  OLDI	
  Microservices 	
  	
  
Akshitha	
  Sriraman,	
  Thomas	
  F.	
  Wenisch	
  

University	
  of	
  Michigan	
  













On-­‐Line	
  Data	
  Intensive	
  (OLDI)	
  Services	
  

2	
  

Must  meet  stringent  Service  Level  Objec5ves  (SLOs)




OLDI:	
  From	
  Monoliths	
  to	
  Microservices	
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Monolithic  service


Scaling


Microservices


Scaling


RPC


From  >100ms  SLOs  to  sub-­‐ms  SLOs




Tail	
  Latency	
  







•  SLOs  are  impacted  by  the  99th+%  (tail)  latency

•  Nega5vely  affects  user  experience

  


Latency
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Latency


The  

long  tail


Goal:  Minimize  microservice  tail  latency




•  Our  focus:  Sub-­‐ms  overheads  due  to  threading  design


Threading	
  Effects	
  on	
  Tails	
  for	
  Monoliths	
  

5	
  

Threading-­‐induced  OS/network  overheads  are  minor  for  monoliths


Lock  conten5on
 Thread  wakeups
 Spurious  context  switch


Blocking
 Polling




Threading	
  Effects	
  on	
  Microservice	
  Tails	
  
•  Threading  can  significantly  impact  microservice  SLOs


6	
  Prior  threading  conclusions  must  be  revisited  for  microservices


Microservice


100μs


20  μs


120μs

20%!


Monolith


300ms


20  μs


300.02ms




Mid-­‐Oer	
  Faces	
  More	
  Threading	
  Overheads	
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Front-­‐End  Microserver
 Mid-­‐Tier  Microserver


Leaf  Microserver  1


Leaf  Microserver  2

•  Mid-­‐5er  –  subject  to  more  threading  overheads


–  Manages  RPC  fan-­‐out  to  many  leaves

–  RPC  layer  interac5ons  dominate  computa5on


Threading  overheads  must  be  characterized  for  mid-­‐%er	
  microservices




Need	
  for	
  a	
  Microservice	
  Benchmark	
  Suite	
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Closed-­‐source

[Ayers  ‘18]


Only  one  workload

[Hsu  ‘15]


Not  representa5ve

[Zhu  ‘16]


Monolithic  

Architectures


[Ferdman  ‘12]

Only  leaf  nodes


[Lo  ‘14]

Domain-­‐specific


[Hauswald  ‘15]


No  open-­‐source  benchmark  sufficiently  represents  microservices




ContribuOons	
  
μSuite:  Benchmark  suite  of  OLDI  services  composed  of  microservices  [1]


Taxonomy  of  threading  models:  Implica5ons  of  threading  designs  [2]


μTune:  Load  adapta5on  system  to  tune  threading  models  &  improve  tails  [2]  


[1]  A.  Sriraman,  T.F.  Wenisch.  μSuite:  A  Benchmark  Suite  for  Microservices.  
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[2]  A.  Sriraman,  T.F.  Wenisch.  μTune:  Auto-­‐Tuned  Threading  for  OLDI  Microservices  
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Achieve  1.9x  tail  latency  speedup  over  state-­‐of-­‐the-­‐art  adapta5ons  [2]
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Outline	
  
•  μSuite:  Descrip5on  of  services  &  microservices

•  Show  how  μSuite  facilitates  future  research



•  A  taxonomy  of  threading  models


–  Characterize  threading  effects  on  microservice  tails


•  μTune:  Dynamic  load  adapta5on  system  that  improves  tail  latency


•  Evalua5on
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μSuite	
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HDSearch
 Router


Set  Algebra
 Recommend


Leaf  compute  bound
 Variability  in  scale-­‐out


Variability  in  leaf  compute
 Variability  in  mid-­‐5er  compute
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Benchmark	
  1:	
  HDSearch	
  
•  Content-­‐based  search  for  image  similarity

•  Leaf  compute  bound  -­‐  mid-­‐5er  has  high  threading  overheads



 μSuite
 HDSearch
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 Set  Alg.
 Recommend
 Evalua5on
Taxonomy
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HDSearch

K = 1 

K = 3 

Feature X2 

Fe
at

ur
e 

X1
 

K = # nearest  
neighbors 



HDSearch:	
  Locality	
  SensiOve	
  Hashing	
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     1 

 
     2 

 
     3 

 
     4 

Key
 Poten5ally  near-­‐by  point  IDs
Data  set

Reduces  nearest  neighbor  computa5on  5me
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HDSearch:	
  OperaOon	
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Front-­‐End  Microserver
 Mid-­‐Tier  Microserver


Leaf  Microserver  1


Leaf  Microserver  2


 1 

 2 

 3 

 4 

Query  

feature  vector


Point  IDs


Point  IDs


Query


Query


Key
 Leaf  id  X  Point  ID
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HDSearch:	
  OperaOon	
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Front-­‐End  

Microserver


Mid-­‐Tier

Microserver


Leaf  
Microserver  1


Leaf

Microserver  2


Query


Query


Point  IDs


Point  IDs


Leaf  1  data  set  shard


Leaf  2  data  set  shard
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HDSearch:	
  OperaOon	
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Front-­‐End  

Microserver


Mid-­‐Tier  

Microserver


Leaf  

Microserver  1


Leaf  

Microserver  2


Query


Query


Leaf  1’s  candidates


Leaf  2’s  candidates
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HDSearch:	
  OperaOon	
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Front-­‐End  

Microserver


Mid-­‐Tier

Microserver


Leaf

Microserver  1


Leaf

Microserver  2


Query


1-­‐NN  

responses


1-­‐NN  

response  


Query
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Other	
  μSuite	
  Services	
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Benchmark  2:  Router
 Benchmark  3:  Set  Algebra
 Benchmark  4:  Recommend


•  Fault  tolerance  by  replica5on



•  GET:SET  asymmetry



•  Varied  scale-­‐out  per  request





•  Inverted  index  of  pos5ng  lists



•  Large  variability  in  leaf  compute  







•  Collabora5ve  filtering



•  Mid-­‐5er  does  litle  work









μSuite	
  Can	
  Facilitate	
  Future	
  Research	
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ContribuOons	
  
μSuite:  Benchmark  suite  of  OLDI  services  composed  of  microservices  [1]


Taxonomy	
  of	
  threading	
  models:	
  ImplicaDons	
  of	
  threading	
  designs	
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μTune:  Load  adapta5on  system  to  tune  threading  models  &  improve  tails  [2]  
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Achieve  1.9x  tail  latency  speedup  over  state-­‐of-­‐the-­‐art  adapta5ons  [2]
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Threading	
  Designs	
  
•  Taxonomy  of  threading  models

•  Threading  dimensions:


–  Block  vs.  Poll

–  In-­‐Line  vs.  Dispatch

–  Synchronous  vs.  Asynchronous
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Threading	
  Dimensions:	
  Block	
  vs.	
  Poll	
  
Block	
  or	
  Interrupt-­‐Driven	
  

•  Low  cost:  avoids  fruitless  poll-­‐loops


•  High  thread  wakeup  latency


Poll	
  

•  Low  latency:  avoids  thread  wakeups


•  Many  poll  threads  cause  conten5on
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Front-­‐End
 Mid-­‐Tier
 Leaf

NW  socket


<block>
Request


Front-­‐End
 Mid-­‐Tier
 Leaf

NW  socket


<poll>
Request
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Threading	
  Dimensions:	
  In-­‐Line	
  vs.	
  Dispatch	
  
In-­‐Line	
  

•  Beter  for  short  queries:  no  hand-­‐off


•  Many  in-­‐line  threads  may  contend


Dispatch	
  

•  Beter  network  poller  locality

•  Harder  to  program:  thread-­‐safety
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Front-­‐End
 Mid-­‐Tier
 Leaf


In-­‐Line  thread


Request


Front-­‐End
 Mid-­‐Tier
 Leaf


Network  poller  thread

Request


Dispatch

Task  queue


Worker  no5fied
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Threading	
  Dimensions:	
  Sync.	
  vs.	
  Async.	
  
Synchronous	
   Asynchronous	
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Front-­‐End
 Mid-­‐Tier
 Leaf


Network  poller  thread

Request


Task  queue

Worker  no5fied


Front-­‐End
 Mid-­‐Tier
 Leaf


Network  poller  thread
Request


Worker  no5fied


Compute


Worker  awaits  

no5fica5on


Response


Synchronous
 Asynchronous
NW  (client)  socket

Resp.  thread:

<block/poll>


Response
 Compute
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Synchronous  &  asynchronous  designs  are  built  separately  




Threading	
  Dimensions:	
  Thread	
  Pools	
  
Synchronous	
   Asynchronous	
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Front-­‐End
 Mid-­‐Tier
 Leaf


(1)	
  
Network	
  poller	
  thread	
  Request


Task  queue
(2)	
  
Worker 


Front-­‐End
 Mid-­‐Tier
 Leaf


(1)	
  
Network	
  poller	
  thread	
  Request


(2)	
  
Worker 


Compute


Worker  awaits  

no5fica5on


Response


Synchronous
 Asynchronous
(3)	
  
Response	
  thread:


<block/poll>


Response
 Compute
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A	
  Taxonomy	
  of	
  Threading	
  Models	
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Synchronous
 Asynchronous


Block
 Poll


In-­‐line
 SIB
 SIP


Dispatch
 SDB
 SDP


Block
 Poll


In-­‐line
 AIB
 AIP


Dispatch
 ADB
 ADP


Characterize  varying  thread  pool  sizes  for  each  func5onality  
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Latency	
  Tradeoffs	
  Across	
  Threading	
  Models	
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HDSearch:  Sync.


In-­‐line  Block


In-­‐line  Poll


Dispatch  Block


Dispatch  Poll


1.4x


In-­‐line  Poll  has  lowest  low-­‐load  latency:  Avoids  thread  wakeup  delays
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Latency	
  Tradeoffs	
  Across	
  Threading	
  Models	
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HDSearch:  Sync.


In-­‐line  Block


In-­‐line  Poll


Dispatch  Block


Dispatch  Poll


In-­‐Line  Poll  faces  conten5on;  Dispatch  Poll  with  one  network  poller  is  best  
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Latency	
  Tradeoffs	
  Across	
  Threading	
  Models	
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HDSearch:  Sync.


In-­‐line  Block


In-­‐line  Poll


Dispatch  Block


Dispatch  Poll


Dispatch  Block  is  best  at  high  load  as  it  does  not  waste  CPU  


∞ 
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Latency	
  Tradeoffs	
  Across	
  Threading	
  Models	
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HDSearch:  Sync.


In-­‐line  Block


In-­‐line  Poll


Dispatch  Block


Dispatch  Poll


∞ 

No  single  threading  model  works  best  at  all  loads
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•  Threading  choice  can  significantly  affect  tail  latency

•  Threading  latency  trade-­‐offs  are  not  obvious

•  Most  soxware  face  latency  penal5es  due  to  sta5c  threading
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Need	
  for	
  AutomaOc	
  Load	
  AdaptaOon:	
  μTune	
  

Opportunity:  Exploit  trade-­‐offs  among  threading  models  at  run-­‐5me
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ContribuOons	
  
μSuite:  Benchmark  suite  of  OLDI  services  composed  of  microservices  [1]


Taxonomy  of  threading  models:  Implica5ons  of  threading  designs  [2]


μTune:	
  Load	
  adaptaDon	
  s/m	
  to	
  tune	
  threading	
  models	
  &	
  improve	
  tails	
  [2]	
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  2018.
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Achieve	
  1.9x	
  tail	
  latency	
  speedup	
  over	
  state-­‐of-­‐the-­‐art	
  adaptaDons	
  [2]	
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•  Load  adapta5on:  Vary  threading  model  &  pool  size  at  run-­‐5me

•  Abstract  threading  model  boiler-­‐plate  code  from  RPC  code
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Microservice  func5onality:  ProcessReq(),  InvokeLeaf(),  FinalizeResp()


μTune  automa5c  load  adapta5on  system


RPC  layer


App  layer


μTune  


Network  layer


μTune


Simple  interface:  Developer  defines  only  three  func5ons
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μTune:	
  Goals	
  &	
  Challenges	
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Service  code


μTune‘s  

threading  

framework


Simple  

interface


Quick  load  change  

detec5on


Fast  threading  

model  switches


Scale  

thread  pools
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μTune	
  System	
  Design:	
  Auto-­‐Tuner	
  
•  Dynamically  picks  threading  model  &  pool  sizes  based  on  load
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Experimental	
  Setup	
  
•  μSuite:  Three  service  5ers:


–  Load  generator,  a  mid-­‐5er,  4  or  16  leaf  microservers


•  State-­‐of-­‐the-­‐art  load  genera5on  mechanisms  [Zhang  ‘16]:

–  Closed-­‐loop:  Satura5on  throughput

–  Open-­‐loop  (arrivals  from  exponen5al  distribu5on):  Latency


•  Study  μTune’s  adapta5on  in  two  load  scenarios:

–  Steady-­‐state

–  Transients
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EvaluaOon:	
  μTune’s	
  Load	
  AdaptaOon	
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Converges  to  best  threading  model  &  pool  sizes  to  improve  tails  by  up  to  1.9x	
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Conclusion	
  
•  μSuite  –  benchmark  suite  of  microservices


–  μSuite  can  facilitate  future  research

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          


•  Taxonomy  of  threading  models

–  Op5mal  threading  model  is  load  dependent


•  μTune  –  threading  model  framework  +  load  adapta5on  system
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Comparison	
  With	
  State-­‐of-­‐the-­‐Art	
  
•  Few-­‐to-­‐Many  Parallelism:


–  Adap5ng  thread  pool  sizes

•  Langendoen  et  al.


–  Adap5ng  poll  vs.  block

•  Abdelzaher  et  al.


–  Time  window-­‐based  load  detec5on
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SIP 0.99 >1s >1s AIP 0.95 >1s >1s
SDB 1.49 1.07 1.40 ADB 1.48 1.10 1.40
FM 1.35 13.00 1.32 FM 1.28 4.73 1.33
IPI 1.59 1.10 1.50 IPI NA NA NA

H
D
S
e
a
r
c
h

TBD 1.03 8.69 1.02 TBD 1.06 2.63 1.08
µTune 1.01 1.09 0.99 µTune 0.98 1.13 0.96

SIP 1.10 >1s >1s AIP 1.01 >1s >1s
SDB 1.31 0.83 1.36 ADB 1.35 1.13 1.31
FM 1.33 9.40 1.40 FM 1.30 12.95 1.30
IPI 1.4 1.10 1.38 IPI NA NA NA

R
o
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r

TBD 1.13 4.51 1.11 TBD 1.03 6.24 1.01
µTune 1.12 0.88 1.13 µTune 0.99 1.02 0.98

SIP 0.95 >1s >1s AIP 1.04 >1s >1s
SDB 1.30 0.92 1.32 ADB 1.26 0.99 1.23
FM 1.30 12.00 1.25 FM 1.28 4.14 1.27
IPI 1.20 0.94 1.12 IPI NA NA NA
TBD 1.00 8.45 1.03 TBD 1.09 6.62 1.1

S
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A
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e
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µTune 0.97 0.92 1.03 µTune 1.06 1.1 1.06

SIP 1.00 >1s >1s AIP 1.03 >1s >1s
SDB 1.26 0.96 1.22 ADB 1.37 1.30 1.32
FM 1.23 >1s >1s FM 1.28 8.61 1.20
IPI 1.13 1.02 1.13 IPI NA NA NA
TBD 1.02 4.96 1.03 TBD 1.06 6.00 1.07

R
e
c
o
m
m
e
n
d

µTune 1.00 1.00 1.00 µTune 1.06 1.39 1.04

Table 2: 99th% tail latency (ms) for load transients.

observation windows to track request rate. In our setup,
we replace µTune’s event-based detector with this time-
based detector. We pick 5 ms time-windows (like FM) to
track low loads and react quickly to load spikes.

We evaluate the tail latency exhibited by µTune across
all services, and compare it to these state-of-the-art ap-
proaches [5, 51, 74] for both steady-state and transient
loads. We examine µTune’s ability to pick a suitable
threading model and size thread pools for time-varying
load. We offer loads that differ from those used in train-
ing. We aim to study if µTune selects the best threading
model, as compared to an offline exhaustive search.

7.2.2 Steady-state adaptation
Fig. 12 shows µTune’s ability in converging to the best
threading model and thread pool size for steady-state
loads. Our test steps up and down through the displayed
load levels. We report the tail latency at each load aver-
aged over five trials. The SIP1, SDP1-20, and SDB1-50
bars are optimal threading configurations for some loads.
The nomenclature is the threading model followed by the
pool sizes, in the form model-network-worker-response.
The FM [51], integrated poll/interrupt(IPI) [74], and time-
based detection(TBD) [5] bars are the tail latency of state-
of-the-art systems. The red bars are µTune’s tail latency;
bars are labelled with the configuration µTune chose.

In synchronous mode (Fig. 12(top)), µTune first selects
an SIP model with a single thread, until load grows to
about 1K QPS, at which point it switches to SDP, and be-

gins ramping up the worker thread pool size. At 8K QPS,
it switches to SDB and continues growing the worker
thread pool, until it reaches 50 threads, which is sufficient
to meet the peak load the leaf microservice can sustain.

µTune boosts tail latency by up to 1.7× for HDSearch,
1.6× for Router, 1.4× for Set Algebra, and 1.5× for
Recommend (at 20 QPS) over SDB—the static model
that sustains peak loads. µTune boosts tail latency by a
mean 1.3x over SDB across all loads and services. µTune
also outperforms all state-of-the-art [5, 51, 74] techniques
(except TBD) for at least one load level and never un-
derperforms. µTune outperforms FM by up to 1.3× for
HDSearch and Recommend, and 1.4× for Router and
Set Algebra under low loads, as FM only varies SDB’s
thread pool sizes and hence incurs high network poller and
worker wakeups. µTune outperforms the IPI approach
by up to 1.6× for HDSearch, 1.5× for Router and Rec-

ommend, and 1.4× for Set Algebra under low loads. At
low load, IPI polls with many threads (to sustain peak
load), succumbing to expensive contention. TBD does
as well as µTune as the requests mishandled during the
5 ms monitor window fall in tails greater than the 99th%
percentile that we monitor for 30s for each load level.

In asynchronous mode (Fig. 12(bottom)), µTune again
initially selects an in-line poll model with small-sized
pools, transitioning to ADP and then ADB as load grows.
Four worker and response threads suffice for all loads.
We show that µTune outperforms static threading choices
and state-of-the-art techniques by up to 1.9× for at least
one load level.

Across all loads, µTune selects threading models and
thread pool sizes that perform within 5% of the best
model as determined by offline search. µTune incurs less
than 5% mean instruction overhead over the load-specific
“best” threading model, as depicted in Fig. 13. Hence, we
find our piece-wise linear model sufficient to make good
threading decisions. Note that µTune always prefers a
single thread interacting with the front-end socket. This
finding underscores the importance of maximizing local-
ity and avoiding contention on the RPC receive path.

7.2.3 Load transients
Table 2 indicates µTune’s response to load transients,
where the columns are a series of varied-duration load
levels. The rows are the 99th% tail latency for the models
between which µTune adapts in this scenario (SIP/AIP
and SDB/ADB), state-of-the-art [5, 51, 74] techniques,
and µTune. The key step in this scenario is the 8K/13K
QPS load level, which lasts only 1s. We pick spikes of 8K
QPS and 13K QPS for synchronous and asynchronous as
these loads are SIP and AIP saturation levels, respectively.

We find that the in-line poll models accumulate a large
backlog during the transient as they saturate, and therefore
perform poorly even during successive low loads. FM and
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Figure 11: Graph: Latency vs. load for Set Algebra async.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

cessing, incurring many sharing misses, context switches,
and cache misses. SIB in-line threads contend less as
they block, rather than poll. SDB and SDP exhibit similar
contention. However, SDB outperforms SDP, since SDP
incurs a mean ⇠ 10% higher wasted CPU utilization.

Additional Tests. (1) We measured µTune with null
(empty) RPC handlers. Complete services incur higher
tails than null RPCs as mid-tier and leaf computations add
to tails. For null RPCs, SIP outperforms SDB by 1.57×
at low loads. (2) We measured HDSearch on another
hardware platform (Intel Xeon “Skylake” vs. “Haswell”).
We notice similar trends as on our primary Haswell plat-
form, with SIP outperforming SDB by 1.42× at low loads.
(3) We note that the median latency follows a similar trend,
but, with lower absolute values (e.g., HDSearch’s SIP out-
performs SDB by 1.26× at low load). We omit figures for
these tests as they match the reported HDSearch trends.
Threading performance gaps will be wider for faster ser-
vices (e.g., 200K QPS Memcached [26]) as slightest
OS/network overheads will become magnified [122].

7.1.3 Asynchronous models
We show results for Set Algebra’s asynchronous mod-
els in Fig. 11. As above, we omit figures for additional
services as they match Set Algebra trends. Broadly,
trends follow the synchronous models, but latencies are
markedly lower. We note the following differences:

Smaller thread pool sizes. Significantly smaller ( 4
threads) thread pool sizes are sufficient at various loads,
since asynchronous models capitalize on the available
concurrency by quickly moving on to successive requests.
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Figure 13: Async. Set Algebra’s relative frequency of con-
tention, context switches, & cache misses over best model at
peak load: AIP performs worst.

Fig. 12 shows Set Algebra’s asynchronous thread
pool sizes that achieve the best tails for each load level.
We find four threads enough to sustain high loads. Larger
thread pools deteriorate latency by contending for net-
work sockets or CPU resources. In contrast, SIB, SDB,
and SDP need many threads (as many as 50) to exploit
available concurrency.

AIP scales much better than SIP. AIP with just one
in-line and response thread can tolerate much higher load
(up to 4096 QPS) than SIP, since queuing delays engen-
dered by both the front-end network socket and leaf node
response sockets are avoided by the asynchronous design.

ADP scales worse than SDP. ADP with 4 worker and
response threads copes worse than SDP at loads � 8192
QPS even though it does not have a large thread pool con-
tending for CPU (in contrast to SDP at high loads). This
design fails to scale since response threads contend on the
completion queue tied to leaf node response sockets.

OS and microarchitectural effects. Unlike SDP,
ADP incurs more context switches, caches misses, and
HITMs, due to response thread contention (Fig. 13).

7.2 Load adaptation
We next compare µTune’s load adaptation against state-
of-the-art baselines [43, 76, 97] for various load patterns.

7.2.1 Comparison to the state-of-the-art
We compare µTune’s run-time performance to state-of-
the-art adaptation techniques [43, 76, 97]. We find that
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Table 1: Mid-tier microservice hardware specification.

Processor Intel Xeon E5-2699 v3 “Haswell”
Clock frequency 2.30 GHz

Cores / HW threads 36 / 72
DRAM 500 GB
Network 10Gbit/s

Linux kernel version 3.19.0

Linux tasksets limiting them to 20 logical cores for
HDSearch, Set Algebra, and Recommend and 5 logical
cores for Router. Each microservice runs on a dedicated
machine. The mid-tier is not CPU bound; saturation
throughput is limited by leaf server CPU.

To test the effectiveness of µTune’s load adaptation
system and measure its responsiveness to load changes,
we construct the following load generator scenarios. (1)
Load ramp: We increase offered load in discrete 30s steps
from 20 Queries Per Second (QPS) up to a microservice-
specific near-saturation load. (2) Flash crowd: We in-
crease load suddenly from 100 QPS to 8K/13K QPS. In
addition to performance metrics measured by our load
generator, we also report OS and microarchitectural statis-
tics. We use Linux’s perf utility to profile the number of
cache misses and context switches incurred by the mid-
tier microservice. We use Intel’s HITM (hit-Modified)
PEBS coherence event to detect true sharing of cache
lines; an increase in HITM events indicates a correspond-
ing increase in lock contention [109]. We measure thread
wakeup delays (reported as latency histograms) using the
BPF run queue (scheduler) latency tool [23].

7 Evaluation
We first characterize our threading models. We then com-
pare µTune to state-of-the-art adaptation systems.

7.1 Threading model characterization
We explore microservice threading models by first com-
paring synchronous vs. asynchronous performance. We
then separately explore trade-offs among the synchronous
and asynchronous models to report how the latency-
optimal threading model varies with load.

7.1.1 Synchronous vs. Asynchronous
The synchronous vs. asynchronous trade-off is one of
programmability vs. performance. It would be unusual
for a development team to construct both microservice
designs; if the team invests in the asynchronous design,
it will almost certainly be more performant. Still, our
performance study serves to quantify this gap.

Saturation throughput. We record saturation
throughput for the “best” threading model at saturation
(SDB/ADB). In Fig. 6, we see that the greater asyn-
chronous efficiency improves saturation throughput for
µTune’s asynchronous models, a 42% mean throughput
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Figure 6: Sync. vs. async. saturation throughput: async. does
better by a mean 42%.
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Figure 7: Best sync:async tail latency ratio: async. is faster by a
mean 12% at sync.-achievable loads & infinitely faster at high
loads.

boost across all services. But, we spent 5× more effort to
build, debug, and tune the asynchronous models.

Tail latency. Latency cannot meaningfully be mea-
sured at saturation, as the offered load is unsustainable
and queuing delays grow unbounded. So, we compare tail
latencies at load levels from 64 QPS up to synchronous
saturation. In Fig. 7, we show the best sync-to-async ra-
tio of 99th% tail latency across all threading models and
thread pool sizes at each load level; we study inter-model
latencies later. We find asynchronous models improve tail
latency up to ⇠ 1.3× (mean of ⇠ 1.12×) over synchronous
models (for loads that synchronous models can sustain;
i.e.,  8K). This substantial tail latency gap arises because
asynchronous models prevent long queuing delays.

7.1.2 Synchronous models
We study the tail latency vs. load trade-off for services
built with µTune’s synchronous models. We show a cross-
product of the threading taxonomy across loads for HD-
Search in Fig. 8. Each data point is the best 99th% tail
latency for that threading model and load based on an ex-
haustive thread pool size search. Points above the dashed
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Table 1: Mid-tier microservice hardware specification.

Processor Intel Xeon E5-2699 v3 “Haswell”
Clock frequency 2.30 GHz

Cores / HW threads 36 / 72
DRAM 500 GB
Network 10Gbit/s

Linux kernel version 3.19.0

Linux tasksets limiting them to 20 logical cores for
HDSearch, Set Algebra, and Recommend and 5 logical
cores for Router. Each microservice runs on a dedicated
machine. The mid-tier is not CPU bound; saturation
throughput is limited by leaf server CPU.

To test the effectiveness of µTune’s load adaptation
system and measure its responsiveness to load changes,
we construct the following load generator scenarios. (1)
Load ramp: We increase offered load in discrete 30s steps
from 20 Queries Per Second (QPS) up to a microservice-
specific near-saturation load. (2) Flash crowd: We in-
crease load suddenly from 100 QPS to 8K/13K QPS. In
addition to performance metrics measured by our load
generator, we also report OS and microarchitectural statis-
tics. We use Linux’s perf utility to profile the number of
cache misses and context switches incurred by the mid-
tier microservice. We use Intel’s HITM (hit-Modified)
PEBS coherence event to detect true sharing of cache
lines; an increase in HITM events indicates a correspond-
ing increase in lock contention [109]. We measure thread
wakeup delays (reported as latency histograms) using the
BPF run queue (scheduler) latency tool [23].

7 Evaluation
We first characterize our threading models. We then com-
pare µTune to state-of-the-art adaptation systems.

7.1 Threading model characterization
We explore microservice threading models by first com-
paring synchronous vs. asynchronous performance. We
then separately explore trade-offs among the synchronous
and asynchronous models to report how the latency-
optimal threading model varies with load.

7.1.1 Synchronous vs. Asynchronous
The synchronous vs. asynchronous trade-off is one of
programmability vs. performance. It would be unusual
for a development team to construct both microservice
designs; if the team invests in the asynchronous design,
it will almost certainly be more performant. Still, our
performance study serves to quantify this gap.

Saturation throughput. We record saturation
throughput for the “best” threading model at saturation
(SDB/ADB). In Fig. 6, we see that the greater asyn-
chronous efficiency improves saturation throughput for
µTune’s asynchronous models, a 42% mean throughput
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Figure 6: Sync. vs. async. saturation throughput: async. does
better by a mean 42%.
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Figure 7: Best sync:async tail latency ratio: async. is faster by a
mean 12% at sync.-achievable loads & infinitely faster at high
loads.

boost across all services. But, we spent 5× more effort to
build, debug, and tune the asynchronous models.

Tail latency. Latency cannot meaningfully be mea-
sured at saturation, as the offered load is unsustainable
and queuing delays grow unbounded. So, we compare tail
latencies at load levels from 64 QPS up to synchronous
saturation. In Fig. 7, we show the best sync-to-async ra-
tio of 99th% tail latency across all threading models and
thread pool sizes at each load level; we study inter-model
latencies later. We find asynchronous models improve tail
latency up to ⇠ 1.3× (mean of ⇠ 1.12×) over synchronous
models (for loads that synchronous models can sustain;
i.e.,  8K). This substantial tail latency gap arises because
asynchronous models prevent long queuing delays.

7.1.2 Synchronous models
We study the tail latency vs. load trade-off for services
built with µTune’s synchronous models. We show a cross-
product of the threading taxonomy across loads for HD-
Search in Fig. 8. Each data point is the best 99th% tail
latency for that threading model and load based on an ex-
haustive thread pool size search. Points above the dashed
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Figure 8: Graph: Latency vs. load trade-off for HDSearch sync.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

line are in saturation, where tail latencies are very high
and meaningless. The table reports the same graph data
with each load latency normalized to the best latency for
that load, which is highlighted in blue. We omit graphs
for other applications as they match the HDSearch trends.

We make the following observations:
SDB enables highest load. SDB, with a single net-

work thread and a large worker pool of 50 threads is the
only model that sustains peak loads (� 10K QPS). SDB
is best at high loads as (1) its worker pool has enough
concurrency so that leaf microservers, rather than the
mid-tier, pose the bottleneck; and (2) the single network
thread is enough to accept and dispatch the offered load.
SDB outperforms SDP at high load as polling consumes
CPU in fruitless poll loops. For example, at 10,000 QPS,
the mid-tier microserver receives one query every 100
microseconds. In SDP, poll loops are often shorter than
100 microseconds. Hence, some poll loops that do not
retrieve any requests are wasted work and may delay crit-
ical work scheduling, such as RPC response processing.
Under SDB, the CPU time wasted in empty poll loops
can instead be used to progress an ongoing request.

SIP has lowest latency at low load. While SDB sus-
tains peak loads, it is latency-suboptimal at low loads. SIP
offers 1.4× better low-load tail latency by avoiding up to
two OS thread wakeups relative to alternative models: (1)
network thread wakeups via interrupts on query arrivals,
and (2) worker wakeups for RPC dispatch. Work hand-off
among threads may cause OS-induced scheduling tails.

SDP is best at intermediate loads. SIP ceases being
the best model when the offered load grows too large for
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Figure 9: HDSearch sync. thread wakeups at 64 QPS: Block
incurs more wakeups.
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Figure 10: Relative frequency of sync. contention, context
switches & cache misses at 10K QPS: SIP does worst.

one in-line thread to sustain. Adding more in-line polling
threads causes contention in the OS and RPC reception
code paths. Additional in-line blocking threads are less
disruptive, but SIB never outperforms SDP. By switching
to a dispatched model, a single network thread can still
accept the incoming RPCs, avoiding contention and local-
ity losses of running the gRPC [18] and network receive
stacks across many cores. The workers add sufficient
concurrency to sustain RPC and response processing. We
further note that SDP tail latencies at intermediate loads
are better than at low load, since there is better tempo-
ral locality and OS and networking performance tend to
improve due to batching effects in the networking stack.

OS and microarchitectural effects. We report OS
thread wakeup latency distributions for HDSearch syn-
chronous models at 64 QPS in Fig. 9. Although some
OS thread wakeups are fast (⇠5 µs), blocking models
frequently incur 32-64 µs range wakeups. This data also
depicts the advantage of in-line over dispatched models
with respect to low-load worker wakeup costs.

Fig. 10 shows the relative frequency of true sharing
misses (HITM), context switches, and cache misses for
threading models at high load (10K QPS). These results
show why SIP fails to scale as load increases. SIP needs
multiple threads to sustain loads � 512 QPS. Multiple
pollers contend pathologically on the network receive pro-
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Figure 8: Graph: Latency vs. load trade-off for HDSearch sync.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

line are in saturation, where tail latencies are very high
and meaningless. The table reports the same graph data
with each load latency normalized to the best latency for
that load, which is highlighted in blue. We omit graphs
for other applications as they match the HDSearch trends.

We make the following observations:
SDB enables highest load. SDB, with a single net-

work thread and a large worker pool of 50 threads is the
only model that sustains peak loads (� 10K QPS). SDB
is best at high loads as (1) its worker pool has enough
concurrency so that leaf microservers, rather than the
mid-tier, pose the bottleneck; and (2) the single network
thread is enough to accept and dispatch the offered load.
SDB outperforms SDP at high load as polling consumes
CPU in fruitless poll loops. For example, at 10,000 QPS,
the mid-tier microserver receives one query every 100
microseconds. In SDP, poll loops are often shorter than
100 microseconds. Hence, some poll loops that do not
retrieve any requests are wasted work and may delay crit-
ical work scheduling, such as RPC response processing.
Under SDB, the CPU time wasted in empty poll loops
can instead be used to progress an ongoing request.

SIP has lowest latency at low load. While SDB sus-
tains peak loads, it is latency-suboptimal at low loads. SIP
offers 1.4× better low-load tail latency by avoiding up to
two OS thread wakeups relative to alternative models: (1)
network thread wakeups via interrupts on query arrivals,
and (2) worker wakeups for RPC dispatch. Work hand-off
among threads may cause OS-induced scheduling tails.

SDP is best at intermediate loads. SIP ceases being
the best model when the offered load grows too large for
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Figure 9: HDSearch sync. thread wakeups at 64 QPS: Block
incurs more wakeups.
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Figure 10: Relative frequency of sync. contention, context
switches & cache misses at 10K QPS: SIP does worst.

one in-line thread to sustain. Adding more in-line polling
threads causes contention in the OS and RPC reception
code paths. Additional in-line blocking threads are less
disruptive, but SIB never outperforms SDP. By switching
to a dispatched model, a single network thread can still
accept the incoming RPCs, avoiding contention and local-
ity losses of running the gRPC [18] and network receive
stacks across many cores. The workers add sufficient
concurrency to sustain RPC and response processing. We
further note that SDP tail latencies at intermediate loads
are better than at low load, since there is better tempo-
ral locality and OS and networking performance tend to
improve due to batching effects in the networking stack.

OS and microarchitectural effects. We report OS
thread wakeup latency distributions for HDSearch syn-
chronous models at 64 QPS in Fig. 9. Although some
OS thread wakeups are fast (⇠5 µs), blocking models
frequently incur 32-64 µs range wakeups. This data also
depicts the advantage of in-line over dispatched models
with respect to low-load worker wakeup costs.

Fig. 10 shows the relative frequency of true sharing
misses (HITM), context switches, and cache misses for
threading models at high load (10K QPS). These results
show why SIP fails to scale as load increases. SIP needs
multiple threads to sustain loads � 512 QPS. Multiple
pollers contend pathologically on the network receive pro-
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Figure 11: Graph: Latency vs. load for Set Algebra async.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

cessing, incurring many sharing misses, context switches,
and cache misses. SIB in-line threads contend less as
they block, rather than poll. SDB and SDP exhibit similar
contention. However, SDB outperforms SDP, since SDP
incurs a mean ⇠ 10% higher wasted CPU utilization.

Additional Tests. (1) We measured µTune with null
(empty) RPC handlers. Complete services incur higher
tails than null RPCs as mid-tier and leaf computations add
to tails. For null RPCs, SIP outperforms SDB by 1.57×
at low loads. (2) We measured HDSearch on another
hardware platform (Intel Xeon “Skylake” vs. “Haswell”).
We notice similar trends as on our primary Haswell plat-
form, with SIP outperforming SDB by 1.42× at low loads.
(3) We note that the median latency follows a similar trend,
but, with lower absolute values (e.g., HDSearch’s SIP out-
performs SDB by 1.26× at low load). We omit figures for
these tests as they match the reported HDSearch trends.
Threading performance gaps will be wider for faster ser-
vices (e.g., 200K QPS Memcached [26]) as slightest
OS/network overheads will become magnified [122].

7.1.3 Asynchronous models
We show results for Set Algebra’s asynchronous mod-
els in Fig. 11. As above, we omit figures for additional
services as they match Set Algebra trends. Broadly,
trends follow the synchronous models, but latencies are
markedly lower. We note the following differences:

Smaller thread pool sizes. Significantly smaller ( 4
threads) thread pool sizes are sufficient at various loads,
since asynchronous models capitalize on the available
concurrency by quickly moving on to successive requests.
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Figure 12: Async. thread pools for best tails: Big pools contend.
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Figure 13: Async. Set Algebra’s relative frequency of con-
tention, context switches, & cache misses over best model at
peak load: AIP performs worst.

Fig. 12 shows Set Algebra’s asynchronous thread
pool sizes that achieve the best tails for each load level.
We find four threads enough to sustain high loads. Larger
thread pools deteriorate latency by contending for net-
work sockets or CPU resources. In contrast, SIB, SDB,
and SDP need many threads (as many as 50) to exploit
available concurrency.

AIP scales much better than SIP. AIP with just one
in-line and response thread can tolerate much higher load
(up to 4096 QPS) than SIP, since queuing delays engen-
dered by both the front-end network socket and leaf node
response sockets are avoided by the asynchronous design.

ADP scales worse than SDP. ADP with 4 worker and
response threads copes worse than SDP at loads � 8192
QPS even though it does not have a large thread pool con-
tending for CPU (in contrast to SDP at high loads). This
design fails to scale since response threads contend on the
completion queue tied to leaf node response sockets.

OS and microarchitectural effects. Unlike SDP,
ADP incurs more context switches, caches misses, and
HITMs, due to response thread contention (Fig. 13).

7.2 Load adaptation
We next compare µTune’s load adaptation against state-
of-the-art baselines [43, 76, 97] for various load patterns.

7.2.1 Comparison to the state-of-the-art
We compare µTune’s run-time performance to state-of-
the-art adaptation techniques [43, 76, 97]. We find that



Router	
  
•  Routes  key-­‐value  stores  to  Memcached

•  Replica5on-­‐based  protocol  rou5ng  for  fault-­‐tolerance


–  SETs  go  to  mul5ple  leaves


–  GETs  go  to  a  single  leaf


•  More  scalable  –  a  subset  of  leaves  are  contacted

–  May  face  more  threading  overheads  due  to  GET/SET  asymmetry
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•  Query  set:  


–  Set  of  {key,  value}  pairs  from  a  Twiter  data  set  [Ferdman  ‘12]


–  GET:SET  distribu5ons  mimic  YCSB’s  workload  A  (50:50)
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Set	
  Algebra	
  
•  Document  retrieval  for  web  search


–  Set  intersec5ons  on  pos5ng  lists  

•  Inverted  index:


–  Map  of  term  to  all  doc  IDs  containing  term


•  Large  variability  in  leaves’  compute

–  Helps  study  overheads  with  short  &  long  requests
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ID
 Term
 Doc.  IDs


1
 Data
 1,  2,  3,  4


3
 Buterfly
 1,  2,  6,  7


3
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 Unicorn
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Making	
  Set	
  Algebra	
  a	
  Benchmark	
  
•  Data  set:  inverted  index  of  documents


–  4.3M  documents  from  Wikipedia:  10  GB


–  Prepared  sharded  inverted  index  corpus

–  Test  set:  Synthe5cally  created  using  Wikipedia’s  word  probabili5es


–  Query:  uniformly  randomly  selected  set  of  <=  10  terms
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Recommend	
  
•  Predicts  user  ra5ngs  for  specific  items


–  Uses  collabora5ve  filtering


•  Mid-­‐Tier  does  minimal  work  on  the  request  path

–  Helps  study  unmasked  OS  and  network  effects
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Making	
  Recommend	
  a	
  Benchmark	
  
•  Dataset:  {user,  item,  ra5ng}  tuples


–  MovieLens  movie  recommenda5on  data  set  [Harper  ‘15]


–  Prepared  sharded  sparse  user-­‐item  ra5ng  matrix


–  Test  set  of  {user,  item}  query  pairs  from  MovieLens  [Harper  ‘15]
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•  SIP  has  lowest  latency  at  low  load

–  Avoid  two  kinds  of  thread  wakeups


•  SDP  is  best  at  intermediate  loads

–  Avoids  in-­‐line  polling  thread  conten5on


•  SDB  enables  highest  load

–  Single  network  thread,  many  workers


No  single  threading  model  is  op5mal  at  all  loads
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Comparison	
  With	
  State-­‐of-­‐the-­‐Art	
  AdaptaOon	
  
•  Few-­‐to-­‐Many  (FM)  parallelism  [Haque  ‘15]


–  Uses  offline  interval  table  to  select  thread  pool  sizes


•  Integra5ng  Polling  and  Interrupts  (IPI)  [Langendoen  ‘96]

–  Polls  when  threads  are  blocked

–  Uses  interrupts  when  blocked  thread  returns


•  Time-­‐window  Based  Detec5on  (TBD)  [Abdelzaher  ‘99]


–  Track  request  arrivals  in  fixed  observa5on  5me  windows
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μTune  should  outperform  as  it  considers  both  threading  models  &  pool  sizes
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