
μSuite	
 &	
 μTune:	
 Auto-­‐Tuned	
 Threading	

for	
 OLDI	
 Microservices 	
 	

Akshitha	
 Sriraman,	
 Thomas	
 F.	
 Wenisch	

University	
 of	
 Michigan	

On-­‐Line	
 Data	
 Intensive	
 (OLDI)	
 Services	

2	

Must meet stringent Service Level Objec5ves (SLOs)

OLDI:	
 From	
 Monoliths	
 to	
 Microservices	

3	

Monolithic service

Scaling

Microservices

Scaling

RPC

From >100ms SLOs to sub-­‐ms SLOs

Tail	
 Latency	

•  SLOs are impacted by the 99th+% (tail) latency

•  Nega5vely affects user experience

Latency

4	

Latency

The

long tail

Goal: Minimize microservice tail latency

•  Our focus: Sub-­‐ms overheads due to threading design

Threading	
 Effects	
 on	
 Tails	
 for	
 Monoliths	

5	

Threading-­‐induced OS/network overheads are minor for monoliths

Lock conten5on
 Thread wakeups
 Spurious context switch

Blocking
 Polling

Threading	
 Effects	
 on	
 Microservice	
 Tails	

•  Threading can significantly impact microservice SLOs

6	
 Prior threading conclusions must be revisited for microservices

Microservice

100μs

20 μs

120μs

20%!

Monolith

300ms

20 μs

300.02ms

Mid-­‐Oer	
 Faces	
 More	
 Threading	
 Overheads	

7	

Front-­‐End Microserver
 Mid-­‐Tier Microserver

Leaf Microserver 1

Leaf Microserver 2

•  Mid-­‐5er – subject to more threading overheads

–  Manages RPC fan-­‐out to many leaves

–  RPC layer interac5ons dominate computa5on

Threading overheads must be characterized for mid-­‐%er	
 microservices

Need	
 for	
 a	
 Microservice	
 Benchmark	
 Suite	

8	

Closed-­‐source

[Ayers ‘18]

Only one workload

[Hsu ‘15]

Not representa5ve

[Zhu ‘16]

Monolithic

Architectures

[Ferdman ‘12]

Only leaf nodes

[Lo ‘14]

Domain-­‐specific

[Hauswald ‘15]

No open-­‐source benchmark sufficiently represents microservices

ContribuOons	

μSuite: Benchmark suite of OLDI services composed of microservices [1]

Taxonomy of threading models: Implica5ons of threading designs [2]

μTune: Load adapta5on system to tune threading models & improve tails [2]

[1] A. Sriraman, T.F. Wenisch. μSuite: A Benchmark Suite for Microservices.

Interna5onal Symposium on Workload Characteriza5on (IISWC)	
 2018.

[2] A. Sriraman, T.F. Wenisch. μTune: Auto-­‐Tuned Threading for OLDI Microservices

Opera5ng Systems Design and Implementa5on (OSDI)	
 2018.

Achieve 1.9x tail latency speedup over state-­‐of-­‐the-­‐art adapta5ons [2]

9	

Outline	

•  μSuite: Descrip5on of services & microservices

•  Show how μSuite facilitates future research

•  A taxonomy of threading models

–  Characterize threading effects on microservice tails

•  μTune: Dynamic load adapta5on system that improves tail latency

•  Evalua5on

10	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

μSuite	

11	

HDSearch
 Router

Set Algebra
 Recommend

Leaf compute bound
 Variability in scale-­‐out

Variability in leaf compute
 Variability in mid-­‐5er compute

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Benchmark	
 1:	
 HDSearch	

•  Content-­‐based search for image similarity

•  Leaf compute bound -­‐ mid-­‐5er has high threading overheads

 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune
 12	

HDSearch

K = 1

K = 3

Feature X2

Fe
at

ur
e

X1

K = # nearest
neighbors

HDSearch:	
 Locality	
 SensiOve	
 Hashing	

13	

 1

 2

 3

 4

Key
 Poten5ally near-­‐by point IDs
Data set

Reduces nearest neighbor computa5on 5me

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

HDSearch:	
 OperaOon	

14	

Front-­‐End Microserver
 Mid-­‐Tier Microserver

Leaf Microserver 1

Leaf Microserver 2

 1

 2

 3

 4

Query

feature vector

Point IDs

Point IDs

Query

Query

Key
 Leaf id X Point ID

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

HDSearch:	
 OperaOon	

15	

Front-­‐End

Microserver

Mid-­‐Tier

Microserver

Leaf
Microserver 1

Leaf

Microserver 2

Query

Query

Point IDs

Point IDs

Leaf 1 data set shard

Leaf 2 data set shard

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

HDSearch:	
 OperaOon	

16	

Front-­‐End

Microserver

Mid-­‐Tier

Microserver

Leaf

Microserver 1

Leaf

Microserver 2

Query

Query

Leaf 1’s candidates

Leaf 2’s candidates

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

HDSearch:	
 OperaOon	

17	

Front-­‐End

Microserver

Mid-­‐Tier

Microserver

Leaf

Microserver 1

Leaf

Microserver 2

Query

1-­‐NN

responses

1-­‐NN

response

Query

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Other	
 μSuite	
 Services	

18	

Benchmark 2: Router
 Benchmark 3: Set Algebra
 Benchmark 4: Recommend

•  Fault tolerance by replica5on

•  GET:SET asymmetry

•  Varied scale-­‐out per request

•  Inverted index of pos5ng lists

•  Large variability in leaf compute

•  Collabora5ve filtering

•  Mid-­‐5er does litle work

μSuite	
 Can	
 Facilitate	
 Future	
 Research	

19	

ContribuOons	

μSuite: Benchmark suite of OLDI services composed of microservices [1]

Taxonomy	
 of	
 threading	
 models:	
 ImplicaDons	
 of	
 threading	
 designs	
 [2]	

μTune: Load adapta5on system to tune threading models & improve tails [2]

[1] A. Sriraman, T.F. Wenisch. μSuite: A Benchmark Suite for Microservices.

Interna5onal Symposium on Workload Characteriza5on (IISWC)	
 2018.

[2] A. Sriraman, T.F. Wenisch. μTune: Auto-­‐Tuned Threading for OLDI Microservices

Opera5ng Systems Design and Implementa5on (OSDI)	
 2018.

Achieve 1.9x tail latency speedup over state-­‐of-­‐the-­‐art adapta5ons [2]

20	

Threading	
 Designs	

•  Taxonomy of threading models

•  Threading dimensions:

–  Block vs. Poll

–  In-­‐Line vs. Dispatch

–  Synchronous vs. Asynchronous

21	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Threading	
 Dimensions:	
 Block	
 vs.	
 Poll	

Block	
 or	
 Interrupt-­‐Driven	

•  Low cost: avoids fruitless poll-­‐loops

•  High thread wakeup latency

Poll	

•  Low latency: avoids thread wakeups

•  Many poll threads cause conten5on

22	

Front-­‐End
 Mid-­‐Tier
 Leaf

NW socket

<block>
Request

Front-­‐End
 Mid-­‐Tier
 Leaf

NW socket

<poll>
Request

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Threading	
 Dimensions:	
 In-­‐Line	
 vs.	
 Dispatch	

In-­‐Line	

•  Beter for short queries: no hand-­‐off

•  Many in-­‐line threads may contend

Dispatch	

•  Beter network poller locality

•  Harder to program: thread-­‐safety

23	

Front-­‐End
 Mid-­‐Tier
 Leaf

In-­‐Line thread

Request

Front-­‐End
 Mid-­‐Tier
 Leaf

Network poller thread

Request

Dispatch

Task queue

Worker no5fied

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Threading	
 Dimensions:	
 Sync.	
 vs.	
 Async.	

Synchronous	
 Asynchronous	

24	

Front-­‐End
 Mid-­‐Tier
 Leaf

Network poller thread

Request

Task queue

Worker no5fied

Front-­‐End
 Mid-­‐Tier
 Leaf

Network poller thread
Request

Worker no5fied

Compute

Worker awaits

no5fica5on

Response

Synchronous
 Asynchronous
NW (client) socket

Resp. thread:

<block/poll>

Response
 Compute

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Synchronous & asynchronous designs are built separately

Threading	
 Dimensions:	
 Thread	
 Pools	

Synchronous	
 Asynchronous	

25	

Front-­‐End
 Mid-­‐Tier
 Leaf

(1)	

Network	
 poller	
 thread	
 Request

Task queue
(2)	

Worker

Front-­‐End
 Mid-­‐Tier
 Leaf

(1)	

Network	
 poller	
 thread	
 Request

(2)	

Worker

Compute

Worker awaits

no5fica5on

Response

Synchronous
 Asynchronous
(3)	

Response	
 thread:

<block/poll>

Response
 Compute

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

A	
 Taxonomy	
 of	
 Threading	
 Models	

26	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Synchronous
 Asynchronous

Block
 Poll

In-­‐line
 SIB
 SIP

Dispatch
 SDB
 SDP

Block
 Poll

In-­‐line
 AIB
 AIP

Dispatch
 ADB
 ADP

Characterize varying thread pool sizes for each func5onality

27	

Latency	
 Tradeoffs	
 Across	
 Threading	
 Models	

0

0.5

1

1.5

2

10
 100
 1000
 10000

99
th
 p
er
ce
n5

le
 ta
il
la
te
nc
y
(m

s)

Load (Queries Per Second)

satura5on

HDSearch: Sync.

In-­‐line Block

In-­‐line Poll

Dispatch Block

Dispatch Poll

1.4x

In-­‐line Poll has lowest low-­‐load latency: Avoids thread wakeup delays

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

28	

Latency	
 Tradeoffs	
 Across	
 Threading	
 Models	

0

0.5

1

1.5

2

10
 100
 1000
 10000

99
th
 p
er
ce
n5

le
 ta
il
la
te
nc
y
(m

s)

Load (Queries Per Second)

satura5on

HDSearch: Sync.

In-­‐line Block

In-­‐line Poll

Dispatch Block

Dispatch Poll

In-­‐Line Poll faces conten5on; Dispatch Poll with one network poller is best

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

29	

Latency	
 Tradeoffs	
 Across	
 Threading	
 Models	

0

0.5

1

1.5

2

10
 100
 1000
 10000

99
th
 p
er
ce
n5

le
 ta
il
la
te
nc
y
(m

s)

Load (Queries Per Second)

satura5on

HDSearch: Sync.

In-­‐line Block

In-­‐line Poll

Dispatch Block

Dispatch Poll

Dispatch Block is best at high load as it does not waste CPU

∞

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

30	

Latency	
 Tradeoffs	
 Across	
 Threading	
 Models	

0

0.5

1

1.5

2

10
 100
 1000
 10000

99
th
 p
er
ce
n5

le
 ta
il
la
te
nc
y
(m

s)

Load (Queries Per Second)

satura5on

HDSearch: Sync.

In-­‐line Block

In-­‐line Poll

Dispatch Block

Dispatch Poll

∞

No single threading model works best at all loads

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

•  Threading choice can significantly affect tail latency

•  Threading latency trade-­‐offs are not obvious

•  Most soxware face latency penal5es due to sta5c threading

31	

Need	
 for	
 AutomaOc	
 Load	
 AdaptaOon:	
 μTune	

Opportunity: Exploit trade-­‐offs among threading models at run-­‐5me

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

ContribuOons	

μSuite: Benchmark suite of OLDI services composed of microservices [1]

Taxonomy of threading models: Implica5ons of threading designs [2]

μTune:	
 Load	
 adaptaDon	
 s/m	
 to	
 tune	
 threading	
 models	
 &	
 improve	
 tails	
 [2]	
 	

[1] A. Sriraman, T.F. Wenisch. μSuite: A Benchmark Suite for Microservices.

Interna5onal Symposium on Workload Characteriza5on (IISWC)	
 2018.

[2] A. Sriraman, T.F. Wenisch. μTune: Auto-­‐Tuned Threading for OLDI Microservices

Opera5ng Systems Design and Implementa5on (OSDI)	
 2018.

Achieve	
 1.9x	
 tail	
 latency	
 speedup	
 over	
 state-­‐of-­‐the-­‐art	
 adaptaDons	
 [2]	

32	

•  Load adapta5on: Vary threading model & pool size at run-­‐5me

•  Abstract threading model boiler-­‐plate code from RPC code

33	

Microservice func5onality: ProcessReq(), InvokeLeaf(), FinalizeResp()

μTune automa5c load adapta5on system

RPC layer

App layer

μTune

Network layer

μTune

Simple interface: Developer defines only three func5ons

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

μTune:	
 Goals	
 &	
 Challenges	

34	

Service code

μTune‘s

threading

framework

Simple

interface

Quick load change

detec5on

Fast threading

model switches

Scale

thread pools

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

μTune	
 System	
 Design:	
 Auto-­‐Tuner	

•  Dynamically picks threading model & pool sizes based on load

35	

Request rate
 Best TM
 Ideal no. of threads

0 – 128 QPS
 SIP
 In-line: one

.
 .
 .

4096 – 8192 QPS
 SDB
 NW poller: one, Workers: many
(eg. 50), Resp. threads: many

Offline

training

Create piecewise
linear model

Mid-tier Leaf

Front end

Request

Compute

In-line thread

In-line thread

Response

NW socket

In-line thread:
<block>

Synchronous

Mid-tier Leaf

Front end

Request

Compute

In-line thread

Response

NW socket

Synchronous

(a) (b)

Mid-tier Front-
end

Request

Worker

Response

NW socket

Network thread:
<block>

Task queue

Worker notified

Worker awaits
 notification

Synchronous

Dispatch

Leaf

Compute

Mid-tier Front-
end

Request

Worker

Response

NW socket

Network thread:
<poll>

Task queue

Worker notified

Worker awaits
 notification

Synchronous

Dispatch

Leaf

Compute

(a) (b)

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<block>

Response

NW (server)
socket

In-line thread:
<block>

Asynchronous

Leaf

NW (client)
socket

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<poll>

Response

NW (server)
socket

In-line thread:
<poll>

Asynchronous

Leaf

NW (client)
socket

(a) (b)

Front-
end

Request

Network thread:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier Leaf

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<block>

Request

Network thread:
<poll>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<poll>

Front-
end

Mid-tier Leaf

(a) (b)

SIB SIP SDB SDP AIB AIP ADB ADP

(a) µTune framework

Offline
training

(b) Async. µTune’s automatic load adaptation system

1

Create
piecewise
linear model

Request'rate' Best'TM' Ideal'no.'of'threads'

0'–'128'QPS' AIP' Inline:'one'

.'

.'

4096'–'8192'
QPS'

ADB' NW'poller:'one''
Workers:'few'(eg.'4),'
Resp.'threads:'few'

Online:
Request from
front-end gRPC

Circular event buffer 1

2

Request'
rate'

compute'

Send to
switching
logic

Switch'to'best'
TM'and'

thread'poll'
sizes'if'needed'

ProcessRequest()

InvokeLeafAsync()

Request
to leaf

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<block>

Response

NW (server)
socket

In-line thread:
<block>

Asynchronous

Leaf

NW (client)
socket

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<poll>

Response

NW (server)
socket

In-line thread:
<poll>

Asynchronous

Leaf

NW (client)
socket

(a) (b)

Front-
end

Request

Network thread:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier Leaf

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<block>

Request

Network thread:
<poll>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<poll>

Front-
end

Mid-tier Leaf

(a) (b)

FinalizeResponse()
Response from leaf Response to

front-end
3

4

5

6

7

10 11

8

9

2

Circular event buffer

Online:
Request
from

front-­‐end
 gRPC

Request rate

compute

Send to
switching
logic

Switch to
best TM &
thread pool

sizes

Request to leaf

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Experimental	
 Setup	

•  μSuite: Three service 5ers:

–  Load generator, a mid-­‐5er, 4 or 16 leaf microservers

•  State-­‐of-­‐the-­‐art load genera5on mechanisms [Zhang ‘16]:

–  Closed-­‐loop: Satura5on throughput

–  Open-­‐loop (arrivals from exponen5al distribu5on): Latency

•  Study μTune’s adapta5on in two load scenarios:

–  Steady-­‐state

–  Transients

36	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

EvaluaOon:	
 μTune’s	
 Load	
 AdaptaOon	

37	

Converges to best threading model & pool sizes to improve tails by up to 1.9x	

0
0.5

1
1.5

2

20 50 100 1K 8K 14K

Load (Queries Per Second)

∞ 6.17
∞
HDSearch: Async.

99
th
 p
er
ce
n5

le
 ta
il
la
te
nc
y
(m

s)

1.9x	

In-­‐Line Poll
 Dispatch Poll
 Dispatch Block
 Haque ‘15
 Abdelzaher ‘99
 μTune	

satura5on

<5% mean overhead

Conclusion	

•  μSuite – benchmark suite of microservices

–  μSuite can facilitate future research

•  Taxonomy of threading models

–  Op5mal threading model is load dependent

•  μTune – threading model framework + load adapta5on system

38	

A. Sriraman, T.F. Wenisch. μTune: Auto-­‐Tuned Threading for OLDI Microservices

Opera5ng Systems Design and Implementa5on (OSDI) 2018.

A. Sriraman, T.F. Wenisch. μSuite: A Benchmark Suite for Microservices.

Interna5onal Symposium on Workload Characteriza5on (IISWC) 2018.

μSuite	
 &	
 μTune:	
 Auto-­‐Tuned	
 Threading	

for	
 OLDI	
 Microservices 	
 	

Akshitha	
 Sriraman,	
 Thomas	
 F.	
 Wenisch	

	

htps://github.com/wenischlab/MicroSuite

htps://github.com/wenischlab/MicroTune

39	

BACKUP	
 SLIDES	

40	

InstrucOon	
 Overhead	

41	

0"

2"

4"

6"

8"

10"

12"

20" 50" 100" 1K" 8K" 11K"

Sy
nc
."μ

Tu
ne

’s
"in
st
ru
c8
on

"o
ve
rh
ea
d"
(%

)"

Load"(Queries"Per"Second)"

HDSearch"
Router"
Set"Algebra"
Recommend"
Geomean"

<0.005"
<0.005"

<0.005" <0.005"

<0.005" <0.005"

Sync. μTune’s instruc5on overhead for steady-­‐state load: <5% mean overhead

Comparison	
 With	
 State-­‐of-­‐the-­‐Art	

•  Few-­‐to-­‐Many Parallelism:

–  Adap5ng thread pool sizes

•  Langendoen et al.

–  Adap5ng poll vs. block

•  Abdelzaher et al.

–  Time window-­‐based load detec5on

42	

Load	
 Transients	

43	

Synchronous Asynchronous

10
0

Q
PS

(0
-3

0s
)

8K
Q

PS
(3

0s
-3

1s
)

10
0

Q
PS

(3
1

-6
1s

)

10
0

Q
PS

(0
-3

0s
)

13
K

Q
PS

(3
0s

-3
1s

)

10
0

Q
PS

(3
1

-6
1s

)

SIP 0.99 >1s >1s AIP 0.95 >1s >1s
SDB 1.49 1.07 1.40 ADB 1.48 1.10 1.40
FM 1.35 13.00 1.32 FM 1.28 4.73 1.33
IPI 1.59 1.10 1.50 IPI NA NA NA

H
D
S
e
a
r
c
h

TBD 1.03 8.69 1.02 TBD 1.06 2.63 1.08
µTune 1.01 1.09 0.99 µTune 0.98 1.13 0.96

SIP 1.10 >1s >1s AIP 1.01 >1s >1s
SDB 1.31 0.83 1.36 ADB 1.35 1.13 1.31
FM 1.33 9.40 1.40 FM 1.30 12.95 1.30
IPI 1.4 1.10 1.38 IPI NA NA NA

R
o
u
t
e
r

TBD 1.13 4.51 1.11 TBD 1.03 6.24 1.01
µTune 1.12 0.88 1.13 µTune 0.99 1.02 0.98

SIP 0.95 >1s >1s AIP 1.04 >1s >1s
SDB 1.30 0.92 1.32 ADB 1.26 0.99 1.23
FM 1.30 12.00 1.25 FM 1.28 4.14 1.27
IPI 1.20 0.94 1.12 IPI NA NA NA
TBD 1.00 8.45 1.03 TBD 1.09 6.62 1.1

S
e
t

A
l
g
e
b
r
a

µTune 0.97 0.92 1.03 µTune 1.06 1.1 1.06

SIP 1.00 >1s >1s AIP 1.03 >1s >1s
SDB 1.26 0.96 1.22 ADB 1.37 1.30 1.32
FM 1.23 >1s >1s FM 1.28 8.61 1.20
IPI 1.13 1.02 1.13 IPI NA NA NA
TBD 1.02 4.96 1.03 TBD 1.06 6.00 1.07

R
e
c
o
m
m
e
n
d

µTune 1.00 1.00 1.00 µTune 1.06 1.39 1.04

Table 2: 99th% tail latency (ms) for load transients.

observation windows to track request rate. In our setup,
we replace µTune’s event-based detector with this time-
based detector. We pick 5 ms time-windows (like FM) to
track low loads and react quickly to load spikes.

We evaluate the tail latency exhibited by µTune across
all services, and compare it to these state-of-the-art ap-
proaches [5, 51, 74] for both steady-state and transient
loads. We examine µTune’s ability to pick a suitable
threading model and size thread pools for time-varying
load. We offer loads that differ from those used in train-
ing. We aim to study if µTune selects the best threading
model, as compared to an offline exhaustive search.

7.2.2 Steady-state adaptation
Fig. 12 shows µTune’s ability in converging to the best
threading model and thread pool size for steady-state
loads. Our test steps up and down through the displayed
load levels. We report the tail latency at each load aver-
aged over five trials. The SIP1, SDP1-20, and SDB1-50
bars are optimal threading configurations for some loads.
The nomenclature is the threading model followed by the
pool sizes, in the form model-network-worker-response.
The FM [51], integrated poll/interrupt(IPI) [74], and time-
based detection(TBD) [5] bars are the tail latency of state-
of-the-art systems. The red bars are µTune’s tail latency;
bars are labelled with the configuration µTune chose.

In synchronous mode (Fig. 12(top)), µTune first selects
an SIP model with a single thread, until load grows to
about 1K QPS, at which point it switches to SDP, and be-

gins ramping up the worker thread pool size. At 8K QPS,
it switches to SDB and continues growing the worker
thread pool, until it reaches 50 threads, which is sufficient
to meet the peak load the leaf microservice can sustain.

µTune boosts tail latency by up to 1.7× for HDSearch,
1.6× for Router, 1.4× for Set Algebra, and 1.5× for
Recommend (at 20 QPS) over SDB—the static model
that sustains peak loads. µTune boosts tail latency by a
mean 1.3x over SDB across all loads and services. µTune
also outperforms all state-of-the-art [5, 51, 74] techniques
(except TBD) for at least one load level and never un-
derperforms. µTune outperforms FM by up to 1.3× for
HDSearch and Recommend, and 1.4× for Router and
Set Algebra under low loads, as FM only varies SDB’s
thread pool sizes and hence incurs high network poller and
worker wakeups. µTune outperforms the IPI approach
by up to 1.6× for HDSearch, 1.5× for Router and Rec-

ommend, and 1.4× for Set Algebra under low loads. At
low load, IPI polls with many threads (to sustain peak
load), succumbing to expensive contention. TBD does
as well as µTune as the requests mishandled during the
5 ms monitor window fall in tails greater than the 99th%
percentile that we monitor for 30s for each load level.

In asynchronous mode (Fig. 12(bottom)), µTune again
initially selects an in-line poll model with small-sized
pools, transitioning to ADP and then ADB as load grows.
Four worker and response threads suffice for all loads.
We show that µTune outperforms static threading choices
and state-of-the-art techniques by up to 1.9× for at least
one load level.

Across all loads, µTune selects threading models and
thread pool sizes that perform within 5% of the best
model as determined by offline search. µTune incurs less
than 5% mean instruction overhead over the load-specific
“best” threading model, as depicted in Fig. 13. Hence, we
find our piece-wise linear model sufficient to make good
threading decisions. Note that µTune always prefers a
single thread interacting with the front-end socket. This
finding underscores the importance of maximizing local-
ity and avoiding contention on the RPC receive path.

7.2.3 Load transients
Table 2 indicates µTune’s response to load transients,
where the columns are a series of varied-duration load
levels. The rows are the 99th% tail latency for the models
between which µTune adapts in this scenario (SIP/AIP
and SDB/ADB), state-of-the-art [5, 51, 74] techniques,
and µTune. The key step in this scenario is the 8K/13K
QPS load level, which lasts only 1s. We pick spikes of 8K
QPS and 13K QPS for synchronous and asynchronous as
these loads are SIP and AIP saturation levels, respectively.

We find that the in-line poll models accumulate a large
backlog during the transient as they saturate, and therefore
perform poorly even during successive low loads. FM and

Thread	
 Pool	
 Sizes	

0"

0.5"

1"

1.5"

2"

10" 100" 1000" 10000"

99
th
"p
er
ce
n/

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

AIB" AIP" ADB" ADP"

satura/on"

QPS$ 64$ 128$ 256$ 512$ 1024$ 2048$ 4096$ 8192$ 20K$

AIB
 1.3""
 1.3
 1.3
 1.2
 1.1
 1.1
 1.2
 1.9
 ∞

AIP
 1
 1
 1
 1
 1
 1
 1.1
 2.1
 ∞

ADB
 1.4
 1.4
 1.3
 1.1
 1.1
 1.1
 1.1
 1
 1

ADP
 1.1
 1.1
 1.1
 1
 1
 1
 1
 1.8
 ∞

Set Algebra

Figure 11: Graph: Latency vs. load for Set Algebra async.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

cessing, incurring many sharing misses, context switches,
and cache misses. SIB in-line threads contend less as
they block, rather than poll. SDB and SDP exhibit similar
contention. However, SDB outperforms SDP, since SDP
incurs a mean ⇠ 10% higher wasted CPU utilization.

Additional Tests. (1) We measured µTune with null
(empty) RPC handlers. Complete services incur higher
tails than null RPCs as mid-tier and leaf computations add
to tails. For null RPCs, SIP outperforms SDB by 1.57×
at low loads. (2) We measured HDSearch on another
hardware platform (Intel Xeon “Skylake” vs. “Haswell”).
We notice similar trends as on our primary Haswell plat-
form, with SIP outperforming SDB by 1.42× at low loads.
(3) We note that the median latency follows a similar trend,
but, with lower absolute values (e.g., HDSearch’s SIP out-
performs SDB by 1.26× at low load). We omit figures for
these tests as they match the reported HDSearch trends.
Threading performance gaps will be wider for faster ser-
vices (e.g., 200K QPS Memcached [26]) as slightest
OS/network overheads will become magnified [122].

7.1.3 Asynchronous models
We show results for Set Algebra’s asynchronous mod-
els in Fig. 11. As above, we omit figures for additional
services as they match Set Algebra trends. Broadly,
trends follow the synchronous models, but latencies are
markedly lower. We note the following differences:

Smaller thread pool sizes. Significantly smaller ( 4
threads) thread pool sizes are sufficient at various loads,
since asynchronous models capitalize on the available
concurrency by quickly moving on to successive requests.

0"
2"
4"
6"
8"
10"

64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K"

To
ta
l"t
hr
ea
ds
"

Load"(QPS)"for"each"threading"model"

Response"threads" Workers" Inline/network"threads"

AIB" AIP" ADB" ADP"

Set Algebra

Figure 12: Async. thread pools for best tails: Big pools contend.

0"
1"
2"
3"
4"
5"
6"

"HITMs" "Context"switch" Cache"miss"

OS"and"microarchitectural"overheads"

AIB" AIP" ADB" ADP"

N
or
m
al
ize

d"
in
cr
ea
se
"

ov
er
"A
DB

"

Figure 13: Async. Set Algebra’s relative frequency of con-
tention, context switches, & cache misses over best model at
peak load: AIP performs worst.

Fig. 12 shows Set Algebra’s asynchronous thread
pool sizes that achieve the best tails for each load level.
We find four threads enough to sustain high loads. Larger
thread pools deteriorate latency by contending for net-
work sockets or CPU resources. In contrast, SIB, SDB,
and SDP need many threads (as many as 50) to exploit
available concurrency.

AIP scales much better than SIP. AIP with just one
in-line and response thread can tolerate much higher load
(up to 4096 QPS) than SIP, since queuing delays engen-
dered by both the front-end network socket and leaf node
response sockets are avoided by the asynchronous design.

ADP scales worse than SDP. ADP with 4 worker and
response threads copes worse than SDP at loads � 8192
QPS even though it does not have a large thread pool con-
tending for CPU (in contrast to SDP at high loads). This
design fails to scale since response threads contend on the
completion queue tied to leaf node response sockets.

OS and microarchitectural effects. Unlike SDP,
ADP incurs more context switches, caches misses, and
HITMs, due to response thread contention (Fig. 13).

7.2 Load adaptation
We next compare µTune’s load adaptation against state-
of-the-art baselines [43, 76, 97] for various load patterns.

7.2.1 Comparison to the state-of-the-art
We compare µTune’s run-time performance to state-of-
the-art adaptation techniques [43, 76, 97]. We find that

44	

Sync	
 vs.	
 Async:	
 SaturaOon	
 Throughput	

45	

Table 1: Mid-tier microservice hardware specification.

Processor Intel Xeon E5-2699 v3 “Haswell”
Clock frequency 2.30 GHz

Cores / HW threads 36 / 72
DRAM 500 GB
Network 10Gbit/s

Linux kernel version 3.19.0

Linux tasksets limiting them to 20 logical cores for
HDSearch, Set Algebra, and Recommend and 5 logical
cores for Router. Each microservice runs on a dedicated
machine. The mid-tier is not CPU bound; saturation
throughput is limited by leaf server CPU.

To test the effectiveness of µTune’s load adaptation
system and measure its responsiveness to load changes,
we construct the following load generator scenarios. (1)
Load ramp: We increase offered load in discrete 30s steps
from 20 Queries Per Second (QPS) up to a microservice-
specific near-saturation load. (2) Flash crowd: We in-
crease load suddenly from 100 QPS to 8K/13K QPS. In
addition to performance metrics measured by our load
generator, we also report OS and microarchitectural statis-
tics. We use Linux’s perf utility to profile the number of
cache misses and context switches incurred by the mid-
tier microservice. We use Intel’s HITM (hit-Modified)
PEBS coherence event to detect true sharing of cache
lines; an increase in HITM events indicates a correspond-
ing increase in lock contention [109]. We measure thread
wakeup delays (reported as latency histograms) using the
BPF run queue (scheduler) latency tool [23].

7 Evaluation
We first characterize our threading models. We then com-
pare µTune to state-of-the-art adaptation systems.

7.1 Threading model characterization
We explore microservice threading models by first com-
paring synchronous vs. asynchronous performance. We
then separately explore trade-offs among the synchronous
and asynchronous models to report how the latency-
optimal threading model varies with load.

7.1.1 Synchronous vs. Asynchronous
The synchronous vs. asynchronous trade-off is one of
programmability vs. performance. It would be unusual
for a development team to construct both microservice
designs; if the team invests in the asynchronous design,
it will almost certainly be more performant. Still, our
performance study serves to quantify this gap.

Saturation throughput. We record saturation
throughput for the “best” threading model at saturation
(SDB/ADB). In Fig. 6, we see that the greater asyn-
chronous efficiency improves saturation throughput for
µTune’s asynchronous models, a 42% mean throughput

0"

5"

10"

15"

20"

25"

30"

HDSearch" Router" Set"Algebra" Recommend"

Workloads"

Synchronous" Asynchronous"

Sa
tu
ra
>o

n"
th
ro
ug
hp

ut
"(t
ho

us
an
ds
"o
f"Q

PS
)"

Figure 6: Sync. vs. async. saturation throughput: async. does
better by a mean 42%.

0"

0.5"

1"

1.5"

2"

64" 128" 256" 512" 1K" 2K" 4K" 8K" 16K"

Load"(Queries"Per"Second)"

HDSearch" Router" Set"Algebra" Recommend"

∞ ∞ ∞ ∞

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

ra
tio

 (s
yn

c:
as

yn
c)

Figure 7: Best sync:async tail latency ratio: async. is faster by a
mean 12% at sync.-achievable loads & infinitely faster at high
loads.

boost across all services. But, we spent 5× more effort to
build, debug, and tune the asynchronous models.

Tail latency. Latency cannot meaningfully be mea-
sured at saturation, as the offered load is unsustainable
and queuing delays grow unbounded. So, we compare tail
latencies at load levels from 64 QPS up to synchronous
saturation. In Fig. 7, we show the best sync-to-async ra-
tio of 99th% tail latency across all threading models and
thread pool sizes at each load level; we study inter-model
latencies later. We find asynchronous models improve tail
latency up to ⇠ 1.3× (mean of ⇠ 1.12×) over synchronous
models (for loads that synchronous models can sustain;
i.e.,  8K). This substantial tail latency gap arises because
asynchronous models prevent long queuing delays.

7.1.2 Synchronous models
We study the tail latency vs. load trade-off for services
built with µTune’s synchronous models. We show a cross-
product of the threading taxonomy across loads for HD-
Search in Fig. 8. Each data point is the best 99th% tail
latency for that threading model and load based on an ex-
haustive thread pool size search. Points above the dashed

Sync.	
 Vs.	
 Async.:	
 Tail	
 Latency	

46	

Table 1: Mid-tier microservice hardware specification.

Processor Intel Xeon E5-2699 v3 “Haswell”
Clock frequency 2.30 GHz

Cores / HW threads 36 / 72
DRAM 500 GB
Network 10Gbit/s

Linux kernel version 3.19.0

Linux tasksets limiting them to 20 logical cores for
HDSearch, Set Algebra, and Recommend and 5 logical
cores for Router. Each microservice runs on a dedicated
machine. The mid-tier is not CPU bound; saturation
throughput is limited by leaf server CPU.

To test the effectiveness of µTune’s load adaptation
system and measure its responsiveness to load changes,
we construct the following load generator scenarios. (1)
Load ramp: We increase offered load in discrete 30s steps
from 20 Queries Per Second (QPS) up to a microservice-
specific near-saturation load. (2) Flash crowd: We in-
crease load suddenly from 100 QPS to 8K/13K QPS. In
addition to performance metrics measured by our load
generator, we also report OS and microarchitectural statis-
tics. We use Linux’s perf utility to profile the number of
cache misses and context switches incurred by the mid-
tier microservice. We use Intel’s HITM (hit-Modified)
PEBS coherence event to detect true sharing of cache
lines; an increase in HITM events indicates a correspond-
ing increase in lock contention [109]. We measure thread
wakeup delays (reported as latency histograms) using the
BPF run queue (scheduler) latency tool [23].

7 Evaluation
We first characterize our threading models. We then com-
pare µTune to state-of-the-art adaptation systems.

7.1 Threading model characterization
We explore microservice threading models by first com-
paring synchronous vs. asynchronous performance. We
then separately explore trade-offs among the synchronous
and asynchronous models to report how the latency-
optimal threading model varies with load.

7.1.1 Synchronous vs. Asynchronous
The synchronous vs. asynchronous trade-off is one of
programmability vs. performance. It would be unusual
for a development team to construct both microservice
designs; if the team invests in the asynchronous design,
it will almost certainly be more performant. Still, our
performance study serves to quantify this gap.

Saturation throughput. We record saturation
throughput for the “best” threading model at saturation
(SDB/ADB). In Fig. 6, we see that the greater asyn-
chronous efficiency improves saturation throughput for
µTune’s asynchronous models, a 42% mean throughput

0"

5"

10"

15"

20"

25"

30"

HDSearch" Router" Set"Algebra" Recommend"

Workloads"

Synchronous" Asynchronous"

Sa
tu
ra
>o

n"
th
ro
ug
hp

ut
"(t
ho

us
an
ds
"o
f"Q

PS
)"

Figure 6: Sync. vs. async. saturation throughput: async. does
better by a mean 42%.

0"

0.5"

1"

1.5"

2"

64" 128" 256" 512" 1K" 2K" 4K" 8K" 16K"

Load"(Queries"Per"Second)"

HDSearch" Router" Set"Algebra" Recommend"

∞ ∞ ∞ ∞

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

ra
tio

 (s
yn

c:
as

yn
c)

Figure 7: Best sync:async tail latency ratio: async. is faster by a
mean 12% at sync.-achievable loads & infinitely faster at high
loads.

boost across all services. But, we spent 5× more effort to
build, debug, and tune the asynchronous models.

Tail latency. Latency cannot meaningfully be mea-
sured at saturation, as the offered load is unsustainable
and queuing delays grow unbounded. So, we compare tail
latencies at load levels from 64 QPS up to synchronous
saturation. In Fig. 7, we show the best sync-to-async ra-
tio of 99th% tail latency across all threading models and
thread pool sizes at each load level; we study inter-model
latencies later. We find asynchronous models improve tail
latency up to ⇠ 1.3× (mean of ⇠ 1.12×) over synchronous
models (for loads that synchronous models can sustain;
i.e.,  8K). This substantial tail latency gap arises because
asynchronous models prevent long queuing delays.

7.1.2 Synchronous models
We study the tail latency vs. load trade-off for services
built with µTune’s synchronous models. We show a cross-
product of the threading taxonomy across loads for HD-
Search in Fig. 8. Each data point is the best 99th% tail
latency for that threading model and load based on an ex-
haustive thread pool size search. Points above the dashed

Thread	
 Wakeup	
 Delays	

47	

0"

0.5"

1"

1.5"

2"

10" 100" 1000" 10000"

99
th
"p
er
ce
n/

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

SIB" SIP" SDB" SDP"

satura/on"

QPS$ 64$ 128$ 256$ 512$ 1024$ 2048$4096$ 8192$ 10K$

SIB
 1.4""
 1.3
 1.3
 1
 1
 1
 1.1
 1.1
 ∞

SIP
 1
 1
 1
 1.6
 1.6
 1.9
 2.6
 ∞
 ∞

SDB
 1.4
 1.3
 1.3
 1.1
 1.1
 1.1
 1
 1
 1

SDP
 1.2
 1.1
 1
 1
 1
 1
 1.1
 1.4
 ∞

HDSearch

Figure 8: Graph: Latency vs. load trade-off for HDSearch sync.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

line are in saturation, where tail latencies are very high
and meaningless. The table reports the same graph data
with each load latency normalized to the best latency for
that load, which is highlighted in blue. We omit graphs
for other applications as they match the HDSearch trends.

We make the following observations:
SDB enables highest load. SDB, with a single net-

work thread and a large worker pool of 50 threads is the
only model that sustains peak loads (� 10K QPS). SDB
is best at high loads as (1) its worker pool has enough
concurrency so that leaf microservers, rather than the
mid-tier, pose the bottleneck; and (2) the single network
thread is enough to accept and dispatch the offered load.
SDB outperforms SDP at high load as polling consumes
CPU in fruitless poll loops. For example, at 10,000 QPS,
the mid-tier microserver receives one query every 100
microseconds. In SDP, poll loops are often shorter than
100 microseconds. Hence, some poll loops that do not
retrieve any requests are wasted work and may delay crit-
ical work scheduling, such as RPC response processing.
Under SDB, the CPU time wasted in empty poll loops
can instead be used to progress an ongoing request.

SIP has lowest latency at low load. While SDB sus-
tains peak loads, it is latency-suboptimal at low loads. SIP
offers 1.4× better low-load tail latency by avoiding up to
two OS thread wakeups relative to alternative models: (1)
network thread wakeups via interrupts on query arrivals,
and (2) worker wakeups for RPC dispatch. Work hand-off
among threads may cause OS-induced scheduling tails.

SDP is best at intermediate loads. SIP ceases being
the best model when the offered load grows too large for

0"

2"

4"

6"

8"

0"'
"1"

2"'
"3"

4"'
"7"

8"'
"15
"

16
"'"3
1"

32
"'"6
3"

64
"'"1
27
"

Wakeup"latency"distribu<on"(us"range)"

SIB" SIP" SDB" SDP"

N
o.
"o
f"t
hr
ea
d"
w
ak
e'
up

s"(
th
ou

sa
nd

s)
"

Figure 9: HDSearch sync. thread wakeups at 64 QPS: Block
incurs more wakeups.

0"

0.5"

1"

1.5"

2"

2.5"

"HITMs" "Context"switch" Cache"miss"

SIB" SIP" SDB" SDP"

N
or
m
al
ize

d"
"in
cr
ea
se
"o
ve
r"b

es
t"m

od
el
"

OS"and"microarchitectural"overheads"

Figure 10: Relative frequency of sync. contention, context
switches & cache misses at 10K QPS: SIP does worst.

one in-line thread to sustain. Adding more in-line polling
threads causes contention in the OS and RPC reception
code paths. Additional in-line blocking threads are less
disruptive, but SIB never outperforms SDP. By switching
to a dispatched model, a single network thread can still
accept the incoming RPCs, avoiding contention and local-
ity losses of running the gRPC [18] and network receive
stacks across many cores. The workers add sufficient
concurrency to sustain RPC and response processing. We
further note that SDP tail latencies at intermediate loads
are better than at low load, since there is better tempo-
ral locality and OS and networking performance tend to
improve due to batching effects in the networking stack.

OS and microarchitectural effects. We report OS
thread wakeup latency distributions for HDSearch syn-
chronous models at 64 QPS in Fig. 9. Although some
OS thread wakeups are fast (⇠5 µs), blocking models
frequently incur 32-64 µs range wakeups. This data also
depicts the advantage of in-line over dispatched models
with respect to low-load worker wakeup costs.

Fig. 10 shows the relative frequency of true sharing
misses (HITM), context switches, and cache misses for
threading models at high load (10K QPS). These results
show why SIP fails to scale as load increases. SIP needs
multiple threads to sustain loads � 512 QPS. Multiple
pollers contend pathologically on the network receive pro-

OS	
 &	
 Microarchitectural	
 Effects	

48	

0"

0.5"

1"

1.5"

2"

10" 100" 1000" 10000"

99
th
"p
er
ce
n/

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

SIB" SIP" SDB" SDP"

satura/on"

QPS$ 64$ 128$ 256$ 512$ 1024$ 2048$4096$ 8192$ 10K$

SIB
 1.4""
 1.3
 1.3
 1
 1
 1
 1.1
 1.1
 ∞

SIP
 1
 1
 1
 1.6
 1.6
 1.9
 2.6
 ∞
 ∞

SDB
 1.4
 1.3
 1.3
 1.1
 1.1
 1.1
 1
 1
 1

SDP
 1.2
 1.1
 1
 1
 1
 1
 1.1
 1.4
 ∞

HDSearch

Figure 8: Graph: Latency vs. load trade-off for HDSearch sync.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

line are in saturation, where tail latencies are very high
and meaningless. The table reports the same graph data
with each load latency normalized to the best latency for
that load, which is highlighted in blue. We omit graphs
for other applications as they match the HDSearch trends.

We make the following observations:
SDB enables highest load. SDB, with a single net-

work thread and a large worker pool of 50 threads is the
only model that sustains peak loads (� 10K QPS). SDB
is best at high loads as (1) its worker pool has enough
concurrency so that leaf microservers, rather than the
mid-tier, pose the bottleneck; and (2) the single network
thread is enough to accept and dispatch the offered load.
SDB outperforms SDP at high load as polling consumes
CPU in fruitless poll loops. For example, at 10,000 QPS,
the mid-tier microserver receives one query every 100
microseconds. In SDP, poll loops are often shorter than
100 microseconds. Hence, some poll loops that do not
retrieve any requests are wasted work and may delay crit-
ical work scheduling, such as RPC response processing.
Under SDB, the CPU time wasted in empty poll loops
can instead be used to progress an ongoing request.

SIP has lowest latency at low load. While SDB sus-
tains peak loads, it is latency-suboptimal at low loads. SIP
offers 1.4× better low-load tail latency by avoiding up to
two OS thread wakeups relative to alternative models: (1)
network thread wakeups via interrupts on query arrivals,
and (2) worker wakeups for RPC dispatch. Work hand-off
among threads may cause OS-induced scheduling tails.

SDP is best at intermediate loads. SIP ceases being
the best model when the offered load grows too large for

0"

2"

4"

6"

8"

0"'
"1"

2"'
"3"

4"'
"7"

8"'
"15
"

16
"'"3
1"

32
"'"6
3"

64
"'"1
27
"

Wakeup"latency"distribu<on"(us"range)"

SIB" SIP" SDB" SDP"

N
o.
"o
f"t
hr
ea
d"
w
ak
e'
up

s"(
th
ou

sa
nd

s)
"

Figure 9: HDSearch sync. thread wakeups at 64 QPS: Block
incurs more wakeups.

0"

0.5"

1"

1.5"

2"

2.5"

"HITMs" "Context"switch" Cache"miss"

SIB" SIP" SDB" SDP"

N
or
m
al
ize

d"
"in
cr
ea
se
"o
ve
r"b

es
t"m

od
el
"

OS"and"microarchitectural"overheads"

Figure 10: Relative frequency of sync. contention, context
switches & cache misses at 10K QPS: SIP does worst.

one in-line thread to sustain. Adding more in-line polling
threads causes contention in the OS and RPC reception
code paths. Additional in-line blocking threads are less
disruptive, but SIB never outperforms SDP. By switching
to a dispatched model, a single network thread can still
accept the incoming RPCs, avoiding contention and local-
ity losses of running the gRPC [18] and network receive
stacks across many cores. The workers add sufficient
concurrency to sustain RPC and response processing. We
further note that SDP tail latencies at intermediate loads
are better than at low load, since there is better tempo-
ral locality and OS and networking performance tend to
improve due to batching effects in the networking stack.

OS and microarchitectural effects. We report OS
thread wakeup latency distributions for HDSearch syn-
chronous models at 64 QPS in Fig. 9. Although some
OS thread wakeups are fast (⇠5 µs), blocking models
frequently incur 32-64 µs range wakeups. This data also
depicts the advantage of in-line over dispatched models
with respect to low-load worker wakeup costs.

Fig. 10 shows the relative frequency of true sharing
misses (HITM), context switches, and cache misses for
threading models at high load (10K QPS). These results
show why SIP fails to scale as load increases. SIP needs
multiple threads to sustain loads � 512 QPS. Multiple
pollers contend pathologically on the network receive pro-

Async.	
 OS	
 &	
 Microarchitectural	
 Effects	

49	

0"

0.5"

1"

1.5"

2"

10" 100" 1000" 10000"

99
th
"p
er
ce
n/

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

AIB" AIP" ADB" ADP"

satura/on"

QPS$ 64$ 128$ 256$ 512$ 1024$ 2048$ 4096$ 8192$ 20K$

AIB
 1.3""
 1.3
 1.3
 1.2
 1.1
 1.1
 1.2
 1.9
 ∞

AIP
 1
 1
 1
 1
 1
 1
 1.1
 2.1
 ∞

ADB
 1.4
 1.4
 1.3
 1.1
 1.1
 1.1
 1.1
 1
 1

ADP
 1.1
 1.1
 1.1
 1
 1
 1
 1
 1.8
 ∞

Set Algebra

Figure 11: Graph: Latency vs. load for Set Algebra async.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

cessing, incurring many sharing misses, context switches,
and cache misses. SIB in-line threads contend less as
they block, rather than poll. SDB and SDP exhibit similar
contention. However, SDB outperforms SDP, since SDP
incurs a mean ⇠ 10% higher wasted CPU utilization.

Additional Tests. (1) We measured µTune with null
(empty) RPC handlers. Complete services incur higher
tails than null RPCs as mid-tier and leaf computations add
to tails. For null RPCs, SIP outperforms SDB by 1.57×
at low loads. (2) We measured HDSearch on another
hardware platform (Intel Xeon “Skylake” vs. “Haswell”).
We notice similar trends as on our primary Haswell plat-
form, with SIP outperforming SDB by 1.42× at low loads.
(3) We note that the median latency follows a similar trend,
but, with lower absolute values (e.g., HDSearch’s SIP out-
performs SDB by 1.26× at low load). We omit figures for
these tests as they match the reported HDSearch trends.
Threading performance gaps will be wider for faster ser-
vices (e.g., 200K QPS Memcached [26]) as slightest
OS/network overheads will become magnified [122].

7.1.3 Asynchronous models
We show results for Set Algebra’s asynchronous mod-
els in Fig. 11. As above, we omit figures for additional
services as they match Set Algebra trends. Broadly,
trends follow the synchronous models, but latencies are
markedly lower. We note the following differences:

Smaller thread pool sizes. Significantly smaller ( 4
threads) thread pool sizes are sufficient at various loads,
since asynchronous models capitalize on the available
concurrency by quickly moving on to successive requests.

0"
2"
4"
6"
8"

10"

64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K"

To
ta
l"t
hr
ea
ds
"

Load"(QPS)"for"each"threading"model"

Response"threads" Workers" Inline/network"threads"

AIB" AIP" ADB" ADP"

Set Algebra

Figure 12: Async. thread pools for best tails: Big pools contend.

0"
1"
2"
3"
4"
5"
6"

"HITMs" "Context"switch" Cache"miss"

OS"and"microarchitectural"overheads"

AIB" AIP" ADB" ADP"
N
or
m
al
ize

d"
in
cr
ea
se
"

ov
er
"A
DB

"

Figure 13: Async. Set Algebra’s relative frequency of con-
tention, context switches, & cache misses over best model at
peak load: AIP performs worst.

Fig. 12 shows Set Algebra’s asynchronous thread
pool sizes that achieve the best tails for each load level.
We find four threads enough to sustain high loads. Larger
thread pools deteriorate latency by contending for net-
work sockets or CPU resources. In contrast, SIB, SDB,
and SDP need many threads (as many as 50) to exploit
available concurrency.

AIP scales much better than SIP. AIP with just one
in-line and response thread can tolerate much higher load
(up to 4096 QPS) than SIP, since queuing delays engen-
dered by both the front-end network socket and leaf node
response sockets are avoided by the asynchronous design.

ADP scales worse than SDP. ADP with 4 worker and
response threads copes worse than SDP at loads � 8192
QPS even though it does not have a large thread pool con-
tending for CPU (in contrast to SDP at high loads). This
design fails to scale since response threads contend on the
completion queue tied to leaf node response sockets.

OS and microarchitectural effects. Unlike SDP,
ADP incurs more context switches, caches misses, and
HITMs, due to response thread contention (Fig. 13).

7.2 Load adaptation
We next compare µTune’s load adaptation against state-
of-the-art baselines [43, 76, 97] for various load patterns.

7.2.1 Comparison to the state-of-the-art
We compare µTune’s run-time performance to state-of-
the-art adaptation techniques [43, 76, 97]. We find that

Router	

•  Routes key-­‐value stores to Memcached

•  Replica5on-­‐based protocol rou5ng for fault-­‐tolerance

–  SETs go to mul5ple leaves

–  GETs go to a single leaf

•  More scalable – a subset of leaves are contacted

–  May face more threading overheads due to GET/SET asymmetry

50	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Router:	
 OperaOon	

51	

Front-­‐End Microserver
 Mid-­‐Tier Microserver

Leaf Microserver 1

Leaf Microserver 2

Key
 Value

Memcached

SET query:

Name = Tom

Name	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Tom	

SpookyHash
Route to

Leaf Microserver 1

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Making	
 Router	
 a	
 Benchmark	

•  Query set:

–  Set of {key, value} pairs from a Twiter data set [Ferdman ‘12]

–  GET:SET distribu5ons mimic YCSB’s workload A (50:50)

52	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Set	
 Algebra	

•  Document retrieval for web search

–  Set intersec5ons on pos5ng lists

•  Inverted index:

–  Map of term to all doc IDs containing term

•  Large variability in leaves’ compute

–  Helps study overheads with short & long requests

53	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

ID
 Term
 Doc. IDs

1
 Data
 1, 2, 3, 4

3
 Buterfly
 1, 2, 6, 7

3
 Rainbow
 2, 4, 5

4
 Unicorn
 2

Set	
 Algebra:	
 OperaOon	

54	

Front-­‐End Microserver
 Mid-­‐Tier Microserver

Leaf Microserver 1

Leaf Microserver 2

Term
 Doc ID

Buterfly

Rainbow

Unicorn

Inverted index

Term
 Doc ID

Buterfly

Unicorn

Rainbow

Inverted index

Search query:

“rainbow unicorn”

3	

3	

4	

6

3
1

1

8
2

4	

Set union

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Set intersec5on

Making	
 Set	
 Algebra	
 a	
 Benchmark	

•  Data set: inverted index of documents

–  4.3M documents from Wikipedia: 10 GB

–  Prepared sharded inverted index corpus

–  Test set: Synthe5cally created using Wikipedia’s word probabili5es

–  Query: uniformly randomly selected set of <= 10 terms

55	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Recommend	

•  Predicts user ra5ngs for specific items

–  Uses collabora5ve filtering

•  Mid-­‐Tier does minimal work on the request path

–  Helps study unmasked OS and network effects

56	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Recommend:	
 OperaOon	

57	

Front-­‐End Microserver
 Mid-­‐Tier Microserver

Leaf Microserver 1

Leaf Microserver 2

Search query:

“User: Tom;

Item: The Hobbit”

Average

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Collabora5ve filtering

Collabora5ve filtering

2
2

2

5

5

4

4
3

3 1

1

Making	
 Recommend	
 a	
 Benchmark	

•  Dataset: {user, item, ra5ng} tuples

–  MovieLens movie recommenda5on data set [Harper ‘15]

–  Prepared sharded sparse user-­‐item ra5ng matrix

–  Test set of {user, item} query pairs from MovieLens [Harper ‘15]

58	
 μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Characterizing	
 the	
 Threading	
 Taxonomy	

0"

0.5"

1"

1.5"

2"

10" 100" 1000" 10000"

99
th
"p
er
ce
n/

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

SIB" SIP" SDB" SDP"

satura/on"

QPS$ 64$ 128$ 256$ 512$ 1024$ 2048$4096$ 8192$ 10K$

SIB
 1.4""
 1.3
 1.3
 1
 1
 1
 1.1
 1.1
 ∞

SIP
 1
 1
 1
 1.6
 1.6
 1.9
 2.6
 ∞
 ∞

SDB
 1.4
 1.3
 1.3
 1.1
 1.1
 1.1
 1
 1
 1

SDP
 1.2
 1.1
 1
 1
 1
 1
 1.1
 1.4
 ∞

HDSearch

59	

•  SIP has lowest latency at low load

–  Avoid two kinds of thread wakeups

•  SDP is best at intermediate loads

–  Avoids in-­‐line polling thread conten5on

•  SDB enables highest load

–  Single network thread, many workers

No single threading model is op5mal at all loads

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Comparison	
 With	
 State-­‐of-­‐the-­‐Art	
 AdaptaOon	

•  Few-­‐to-­‐Many (FM) parallelism [Haque ‘15]

–  Uses offline interval table to select thread pool sizes

•  Integra5ng Polling and Interrupts (IPI) [Langendoen ‘96]

–  Polls when threads are blocked

–  Uses interrupts when blocked thread returns

•  Time-­‐window Based Detec5on (TBD) [Abdelzaher ‘99]

–  Track request arrivals in fixed observa5on 5me windows

60	

μTune should outperform as it considers both threading models & pool sizes

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Sync.	
 Vs.	
 Async.:	
 SaturaOon	
 Throughput	

61	

0

5

10

15

20

25

30

HDS.
 Router
 Set Alg.
 Rec.

Workloads

Sync.

Async.

Async. models are more performant although harder to program

Google Search [www.internetlivestats.com/google-­‐searchsta5s5cs]

40,000 QPS

μSuite
 HDSearch
 Router
 Set Alg.
 Recommend
 Evalua5on
Taxonomy
 μTune

Sa
tu
ra
5o

n
th
ro
ug
hp

ut
 -­‐
th
ou

sa
nd

s
of
 Q
PS

62	

