

Accelerometer: Understanding Acceleration Opportunities for Data Center Overheads at Hyperscale

The 25th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2020)

Rapid Increase in Modern Web Services

μservice SLOs + end of Dennard scaling -> increase in custom HW

But.... What Should we Accelerate?

In Datacenter Derformance Analysis of a Tensor Processing Unit

Minorya: Enabling Low-Dower Highly-Accurate

HARE: Hardware Accelerator for

Regular Expressions

TETRIS: A Streaming Accelerator for Physics-Limited 3D Plane-Wave Ultrasound Imaging

Brendan L. West University of Michigan westbl@umich.edu

Jian Zhou Arizona State University jzhou50@asu.edu

Ronald G. Dreslinski University of Michigan rdreslin@umich.edu

J. Brian Fowlkes University of Michigan fowlkes@umich.edu

Oliver Kripfgans University of Michigan greentom@umich.edu

Chaitali Chakrabarti Arizona State University chaitali@asu.edu

Thomas F. Wenisch University of Michigan twenisch@umich.edu

ABSTRACT Abstract—Deep

Vaib

rapidly becoming t a major component. High volume acquisition rates are imperative for medical ultrasound tasks such as speech r time Al". The growing demand for computationally expensive,

rates to track high frequency motion. These applications also require large imaging apertures to capture sufficient resolution in a 4 in live, interactive services, such as web search, advertising,

Key (?) Acceleration Opportunities

Too many custom HW -> EXPENSIVE

Feed microservice

Widely-studied accelerators

Search ranking

Graphics

Graph processing

Accelerating ML inference

Acceleration Opportunities at Facebook

Web

Feed1, Feed2

Ads1, Ads2

Cache1, Cache2

Which µservice operations consume the most CPU cycles?

Do µservices have common overheads that can inspire future HW designs?

Contribution 1: Where Did My Cycles Go?

memcpy()

Contribution 2: Accelerometer

Analytical model for hardware acceleration

Contribution 3: Validating Accelerometer

Contribution 4: Applying Accelerometer

Post Dennard scaling: What to accelerate?

Characterization

Where do data center cycles go?

Accelerometer

Analytical model for HW acceleration

Validation

Production case studies

Application

How we use Accelerometer

Post Dennard scaling: What to accelerate?

Characterization

Where do data center cycles go?

Accelerometer

Analytical model for HW acceleration

Validation

Production case studies

Application

How we use Accelerometer

Leaf function

Service functionality

Leaf Function Characterization

µService Functionality Characterization

μService Functionality Breakdown

Functionality	Examples
(In)secure IO	IO send/receive
IO pre/post processing	Copy, alloc., etc before/ after IO
(De)compression	(De)compression logic
(De)serialization	RPC De(serialization)
Feature extraction	Feature vector creation in ML services
Prediction/Ranking	ML inference
Core app. logic	Core business logic
Logging	Creating, reading, updating logs
Thread pool mgmt.	Creating, deleting, synchronizing threads

Characterization Takeaways

Orchestration logic

Main µservice logic

Orchestration logic

Service execution

Feed1, Feed2

Cache1, Cache2

Investing in HW Acceleration

Post Dennard scaling: What to accelerate?

Characterization

Where do data center cycles go?

Accelerometer

Analytical model for HW acceleration

Validation

Production case studies

Application

How we use Accelerometer

Accelerometer: Analytical Model

Synchronous Offload

Speedup =

Accelerator cycles critically affect speedup & latency reduction

 $(1-\alpha)C + \alpha C/A + (o_0 + Q + L) n$

Sync. Offload with Thread Oversubscription

Asynchronous Offload

Unaccelerated:

Post Dennard scaling: What to accelerate?

Characterization

Where do data center cycles go?

Accelerometer

Analytical model for HW acceleration

Validation

Production case studies

Application

How we use Accelerometer

Validating Accelerometer: Encryption

Post Dennard scaling: What to accelerate?

Characterization

Where do data center cycles go?

Accelerometer

Analytical model for HW acceleration

Validation

Production case studies

Application

How we use Accelerometer

Applying Accelerometer: Compression

Accelerometer can identify good accelerator investments

Post Dennard scaling: What to accelerate?

Characterization

Where do data center cycles go?

Accelerometer

Analytical model for HW acceleration

Validation

Production case studies

Application

How we use Accelerometer

Accelerometer: Understanding Acceleration Opportunities for Data Center Overheads at Hyperscale

The 25th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2020)