Accelerometer: Understanding Acceleration
Opportunities for Data Center Overheads at Hyperscale

UUUUUUUUUU

facebook M facebook

Akshitha Sriraman* Abhishek Dhanotia

The 25t International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2020)

N
v Stringent Service-Level Objectives

i
¢ Point of diminishing returns

End of Dennard scaling

uservice SLOs + end of Dennard scaling -> increase in custom HW | ,

But.... What Should we Accelerate?

— Toe Madnnnmmbnee NDawilfrasisannnann Asmalania Af a MaAasmnna Nucnnnnnien~ Tjnit

AMinarmm: Enahlinsa | Aaune Daunear Wikl Aaniivata

HARE: Hardware Accelerator for :

Reonlar Exnressions
TeTRris: A Streaming Accelerator for Physics-Limited 3D

Vaib Plane-Wave Ultrasound Imaging
Brendan L. West Jian Zhou Ronald G. Dreslinski J. Brian Fowlkes
University of Michigan Arizona State University University of Michigan University of Michigan
westbl@umich.edu jzhou50@asu.edu rdreslin@umich.edu fowlkes@umich.edu
1 Oliver Kripfgans Chaitali Chakrabarti Thomas F. Wenisch
< Abstract—1 University of Michigan Arizona State University University of Michigan
_m_s__% —_23 greentom@umich.edu chaitali@asu.edu twenisch@umich.edu
Abstract—Deep ABSTRACT rates to track high frequency motion. These applications also re- |

rap'dlvrm“:nm':f' High volume acquisition rates are imperative for medical ultrasound quire large imaging apertures to capture sufficient resolution in a 4
@ major ComponeL- - gime A1’ The growing demand for computationally expensive,

tacke «uch ac eneech r in live. interactive services. \mh as wrh \mnh advertising.

EVERYTHING?! ;

Key (?) Acceleration Opportunities

Widely-studied accelerators

Accelerating ML inference

What is end-to-end Feed'’s throughput increase? < 1.5x! | ,

Acceleration Opportunities at Facebook

&

Web Feedl, Feed?2 Adsl, Ads2 Cachel, Cache2

: H
I i
|jll
‘so,
Sae

55 Which pservice operations
consume the most CPU cycles?

Do uservices have common overheads
that can inspire future HW designs?

°)

7.)

Contribution 1: Where Did My Cycles Go?

Leaf function:
memcpy()

L

uservice functionalities:
ML inference

ML inference

oo

estration
T EMO- T

{g;

High & common orchestration overheads: Worth accelerating |

Contribution 2: Accelerometer

ML inference Analytical model for hardware acceleration

oo

Orchestration

Offload-induced
overheads

Accelerometer: Projects perf. bounds early in the HW design phase| ,

Contribution 3: Validating Accelerometer

Validating in production: Three retrospective case studies

Contribution 4: Applying Accelerometer

R

How can you apply accelerometer to make good HW investments?

N7

il

JARN

Introduction Characterization Accelerometer Validation Application
Post Dennard scaling: ~ Where do data center Analytical model for Production case = How we use
What to accelerate? cycles go? HW acceleration studies Accelerometer

N

nllo

L
Introduction Characterization Accelerometer Validation Application
Post Dennard scaling: Where do data center Analytical model for Production case = How we use
What to accelerate? cycles go? HW acceleration studies Accelerometer

Y

Leaf function Service functionality

n Leaf Function Characterization

Leaf category Examples
Copy, allocation, free,
compare
Kernel Scheduling, interrupt Web
handling, network o Feedl
comm., mem. mgmt. O
2 Feed2
b
""""""""""" o Adsl
C++ atomics, mutex 0
’ 7 l
spin locks, CAS :,E Ads2
. = Cachel
(De)compression I
I Cache2
@ \ Math Intel’s MKL, AVX F5
SSL En(de)cryption %D
o® Google [Kanev'15]
C Libraries Search algorithms, array

& string compute

|/
|\

Miscellaneous Assorted functions

Memory and kernel leaf functions dominate T

% Cycles spent in

microservice
functionalities

uService Functionality Characterization

B Application Logic Orchestration
100

80
60
40

20
) -

Feedl Feed?2 Ads1 Ads2 Cachel Cache2

Facebook's production microservices

Orchestration overheads dominate across microservices

13

uService Functionality Breakdown

Functionalit

(In)secure 10

10 pre/post processing

-y

|0 send/receive

Copy, alloc., etc before/
after 10

(De)compression
(De)serialization

Feature extraction

Prediction/Ranking

(De)compression logic
RPC De(serialization)

Feature vector creation
in ML services

ML inference

Core app. logic

Core business logic

N R B B BN BN BN BN BN BN BN BN BN BN BN BN BN BN B B A -
Logging Creating, reading,
updating logs
Thread pool mgmt. Creating, deleting,

synchronizing threads

Google's services
[Kanev '15]

85

0 20 40 60 80

100

% Cycles spent in various microservice functionalities

Common orchestration overheads dominate across microservices

14

Characterization Takeaways

Orchestration logic Main pservice logic Orchestration logic

Service execution

]

< R [T
S
[N)
0 0
¢
e
e

Web Feedl, Feed2 Ads1, Ads2 Cachel, Cache?2

Accelerating orchestration can improve perf. across global fleet

15

Investing in HW Acceleration

A
| S
VE
US| Core app. logic

Design Test Deploy ! ! >

\Vice execution

Investing in HW acceleration Offload-induced overheads

Risky @scale due to pert. bounds from offload overheads 16

N/

L
Introduction Characterization Accelerometer Validation Application
Post Dennard scaling: Where do data center Analytical model for Production case = How we use

What to accelerate? cycles go? HW acceleration studies Accelerometer

Accelerometer: Analytical Model

Acceleration 4
strategy

ARAnaannt
[#9

Threading design for offload

>
' Synchronous ll Asynchronous l

Models throughput speedup and per-request latency reduction

18

Synchronous Offload

Unaccelerated: To accelerate:
(1-a)C 0y Cagycles
offload I|I Host cycles
L
Sync. thread
returns
Interface
Accelerator
C
Speedup =
(1-a)C+ +(o, + +L)n

Accelerator cycles critically affect speedup & latency reduction

19

@ Sync. Offload with Thread Oversubscription

Unaccelerated:

Accelerator

Context switch penalties impact speedup & latency reduction

(1-a)C 0y 0 0 TThread runs
offload I|I Host cycles
L
Thread
t
Interface rere

20

Asynchronous Offload

@ Unaccelerated:

offload Async. opr. Host cycles
L
Offload
Interface returns

Accelerator

Accelerator cycles do not critically affect speedup 51

N

il

JARN

Introduction Characterization Accelerometer Validation Application
Post Dennard scaling: Where do datacenter Analytical model for Production case = How we use
What to accelerate? cycles go? HW acceleration studies Accelerometer

Validating Accelerometer: Encryption

(1-a)C 0,=0 aC; a=0.19
_—
offload Async. opr. Host cycles
- * 9
L = 2530 cycles C=2.3*107cycles
Interface Accelerator
M |nsecure + Secure 1/0O IO Pre/Post Processing
] o M Serialization/Deserialization Application Logic
Estimated speedup = 8.6% Thread Pool Management
No acc. |
Real speedup = 7.5% Encryption acc. I
0 20 40 60 80 100

% Cycles spent in Cache3 functionalities

Accelerometer estimates speedup with <= 3.7% error 53

N

il

O
L%
Introduction Characterization Accelerometer Validation Application
Post Dennard scaling: Where do datacenter Analytical model for Production case = How we use

What to accelerate? cycles go? HW acceleration studies Accelerometer

Applying Accelerometer: Compression

20 7
15 ~
10 T
5 .
O _
Ideal On-chip (Chen '13) Off-chip:Sync Off-chip:Sync-OS Off-chip:Async
(Simek '08) (Simek '08) (Simek '08)

Accelerometer can identify good accelerator investments

25

N

il

JARN

Introduction Characterization Accelerometer Validation Application
Post Dennard scaling: Where do data center Analytical model for Production case = How we use
What to accelerate? cycles go? HW acceleration studies Accelerometer

Accelerometer: Understanding Acceleration
Opportunities for Data Center Overheads at Hyperscale

UUUUUUUUUU

facebook M facebook

Akshitha Sriraman* Abhishek Dhanotia

The 25t International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2020)

