Accelerometer: Understanding Acceleration
Opportunities for Data Center Overheads at Hyperscale
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v Stringent Service-Level Objectives

i
¢ Point of diminishing returns

End of Dennard scaling

uservice SLOs + end of Dennard scaling -> increase in custom HW | ,




But.... What Should we Accelerate?
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Key (?) Acceleration Opportunities

Widely-studied accelerators

Accelerating ML inference

What is end-to-end Feed'’s throughput increase? < 1.5x! | ,




Acceleration Opportunities at Facebook
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55 Which pservice operations
consume the most CPU cycles?

Do uservices have common overheads
that can inspire future HW designs?
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Contribution 1: Where Did My Cycles Go?

Leaf function:
memcpy()

L

uservice functionalities:
ML inference

ML inference
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High & common orchestration overheads: Worth accelerating |




Contribution 2: Accelerometer

ML inference Analytical model for hardware acceleration
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Orchestration

Offload-induced
overheads

Accelerometer: Projects perf. bounds early in the HW design phase| ,




Contribution 3: Validating Accelerometer

Validating in production: Three retrospective case studies




Contribution 4: Applying Accelerometer
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How can you apply accelerometer to make good HW investments?
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Introduction Characterization  Accelerometer Validation Application
Post Dennard scaling: ~ Where do data center  Analytical model for  Production case = How we use
What to accelerate? cycles go? HW acceleration studies Accelerometer
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Leaf function Service functionality



n Leaf Function Characterization

Leaf category Examples
Copy, allocation, free,
compare
Kernel Scheduling, interrupt Web
handling, network o Feedl
comm., mem. mgmt. O
2 Feed2
b
""""""""""" o Adsl
C++ atomics, mutex 0
’ 7 l
spin locks, CAS :,E Ads2
. = Cachel
(De)compression I
I Cache2
@ \ Math Intel’s MKL, AVX F5
SSL En(de)cryption %D
o® Google [Kanev'15]
C Libraries Search algorithms, array

& string compute
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Miscellaneous Assorted functions

Memory and kernel leaf functions dominate T




% Cycles spent in

microservice
functionalities

uService Functionality Characterization

B Application Logic Orchestration
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Feedl Feed?2 Ads1 Ads2 Cachel Cache2

Facebook's production microservices

Orchestration overheads dominate across microservices

13



uService Functionality Breakdown

Functionalit

(In)secure 10

10 pre/post processing

-y

|0 send/receive

Copy, alloc., etc before/
after 10

(De)compression
(De)serialization

Feature extraction

Prediction/Ranking

(De)compression logic
RPC De(serialization)

Feature vector creation
in ML services

ML inference

Core app. logic

Core business logic
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Logging Creating, reading,
updating logs
Thread pool mgmt. Creating, deleting,

synchronizing threads

Google's services
[Kanev '15]
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% Cycles spent in various microservice functionalities

Common orchestration overheads dominate across microservices
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Characterization Takeaways

Orchestration logic Main pservice logic Orchestration logic

Service execution
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Web Feedl, Feed2 Ads1, Ads2 Cachel, Cache?2

Accelerating orchestration can improve perf. across global fleet
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Investing in HW Acceleration

A
| S
VE
US| Core app. logic

Design Test Deploy ! ! >

\Vice execution

Investing in HW acceleration Offload-induced overheads

Risky @scale due to pert. bounds from offload overheads 16
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Accelerometer: Analytical Model

Acceleration 4
strategy

ARAnaannt
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Threading design for offload

>
' Synchronous ll Asynchronous l

Models throughput speedup and per-request latency reduction

18



Synchronous Offload

Unaccelerated: To accelerate:
(1-a)C 0y Cagycles
offload I|I Host cycles
L
Sync. thread
returns
Interface
Accelerator
C
Speedup =
(1-a)C+ +(o, +  +L)n

Accelerator cycles critically affect speedup & latency reduction
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@ Sync. Offload with Thread Oversubscription

Unaccelerated:

Accelerator

Context switch penalties impact speedup & latency reduction

(1-a)C 0y 0 0 TThread runs
offload I|I Host cycles
L
Thread
t
Interface rere
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Asynchronous Offload

@ Unaccelerated:

offload Async. opr. Host cycles
L
Offload
Interface returns

Accelerator

Accelerator cycles do not critically affect speedup 51
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Validating Accelerometer: Encryption

(1-a)C 0,=0 aC; a=0.19
_—
offload Async. opr. Host cycles
- * 9
L = 2530 cycles C=2.3*107cycles
Interface Accelerator
M |nsecure + Secure 1/0O IO Pre/Post Processing
] o M Serialization/Deserialization Application Logic
Estimated speedup = 8.6% Thread Pool Management
No acc. |
Real speedup = 7.5% Encryption acc. I
0 20 40 60 80 100

% Cycles spent in Cache3 functionalities

Accelerometer estimates speedup with <= 3.7% error 53
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Applying Accelerometer: Compression
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15 ~
10 T
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Ideal On-chip (Chen '13) Off-chip:Sync  Off-chip:Sync-OS  Off-chip:Async
(Simek '08) (Simek '08) (Simek '08)

Accelerometer can identify good accelerator investments
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