
µSuite: A Benchmark Suite for Microservices
Akshitha Sriraman Thomas F. Wenisch

University of Michigan
akshitha@umich.edu, twenisch@umich.edu

Abstract—Modern On-Line Data Intensive (OLDI) applications
have evolved from monolithic systems to instead comprise numer-
ous, distributed microservices interacting via Remote Procedure
Calls (RPCs). Microservices face single-digit millisecond RPC
latency goals (implying sub-ms medians)—much tighter than their
monolithic ancestors that must meet ≥ 100 ms latency targets.
Sub-ms-scale OS/network overheads that were once insignificant
for such monoliths can now come to dominate in the sub-ms-
scale microservice regime. It is therefore vital to characterize
the influence of OS- and network-based effects on microser-
vices. Unfortunately, widely-used academic data center benchmark
suites are unsuitable to aid this characterization as they (1) use
monolithic rather than microservice architectures, and (2) largely
have request service times ≥ 100 ms. In this paper, we investigate
how OS and network overheads impact microservice median
and tail latency by developing a complete suite of microservices
called µSuite that we use to facilitate our study. µSuite comprises
four OLDI services composed of microservices: image similarity
search, protocol routing for key-value stores, set algebra on
posting lists for document search, and recommender systems. Our
characterization reveals that the relationship between optimal
OS/network parameters and service load is complex. Our primary
finding is that non-optimal OS scheduler decisions can degrade
microservice tail latency by up to ∼ 87%.

Index Terms—OLDI, microservice, mid-tier, benchmark suite,
OS and network overheads.

I. INTRODUCTION

On-Line Data Intensive (OLDI) applications such as web
search, advertising, and online retail form a major fraction of
data center applications [105]. Meeting soft real-time deadlines
in the form of Service Level Objectives (SLOs) determines
end-user experience [19], [47], [57], [90] and is of paramount
importance. Whereas OLDI applications once had largely
monolithic software architectures [51], modern OLDI appli-
cations comprise numerous, distributed microservices [69], [87],
[108], [117] such as HTTP connection termination, key-value
serving [73], query rewriting [49], click tracking, access-control
management, protocol routing [22], etc. Several companies
such as Amazon [3], Netflix [26], Gilt [12], LinkedIn [20],
and SoundCloud [38] have adopted microservice architectures
to improve OLDI development and scalability [126]. These
microservices are composed via standardized Remote Procedure
Call (RPC) interfaces, such as Google’s Stubby and gRPC [15]
or Facebook/Apache’s Thrift [42].

While monolithic applications face ≥ 100 ms tail (99th+%)
latency SLOs (e.g.,∼300 ms for web search [116], [124])
microservices must often achieve single-digit millisecond tail
latencies implying sub-ms medians (e.g., ∼100 µs for protocol
routing [130]) as many microservices must be invoked serially

to serve a user’s query. For example, a Facebook news feed
service [81] query may flow through a serial pipeline of many
microservices, such as (1) Sigma [18]: a spam filter, (2)
McRouter [109]: a protocol router, (3) Tao [58]: a distributed
social graph data store, (4) MyRocks [25]: a user database,
thereby placing tight single-digit millisecond latency constraints
on individual microservices. We expect continued growth in
OLDI data sets and applications with composition of ever more
microservices with increasingly complex interactions. Hence,
the pressure for better microservice latency continually mounts.

Prior academic studies have focused on monolithic ser-
vices [71], which typically have ≥ 100 ms tail SLOs [103].
Hence, sub-ms-scale OS/network overheads (e.g., a context
switch cost of 5-20 µs [123]) are often insignificant for
monolithic services. However, the sub-ms-scale regime differs
fundamentally: OS/network overheads that are often minor at
≥ 100 ms-scale, such as spurious context switches, network and
RPC protocol delays, inefficient thread wakeups, or lock con-
tention, can come to dominate microservice latency distributions.
For example, even a single 20 µs spurious context switch implies
a 20% latency penalty for a request to a 100 µs-response latency
protocol routing microservice [130]. Hence, prior conclusions
must be revisited for the microservice regime [50].

Modern OLDI applications comprise a complex web of
microservices that interact via RPCs [69] (Fig. 1). Many prior
works have studied leaf servers [66], [97], [98], [111], [124],
[125], as they are typically most numerous, making them cost-
critical. But, we find that mid-tier servers, which must manage
both incoming and outgoing RPCs to many clients and leaves,
perhaps face greater tail latency optimization challenges, but
have not been similarly scrutinized. The mid-tier microserver is
a particularly interesting object of study since (1) it acts as both
an RPC client and an RPC server, (2) it must manage fan-out
of a single incoming query to many leaf microservers, and (3)
its computation typically takes tens of microseconds, about as
long as OS, networking, and RPC overheads.

While it may be possible to study mid-tier microservice
overheads in a purely synthetic context, greater insight can be
drawn in the context of complete OLDI services. Widely-used
academic data center benchmark suites, such as CloudSuite [71]
or Google PerfKit [28], are unsuitable for characterizing
microservices as they (1) include primarily leaf services, (2)
use monolithic rather than microservice architectures, and (3)
largely have request service times ≥ 100 ms.

No existing open-source benchmark suite represents the typi-

Final response
Front-end
microserver

Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Intermediate response

Mid-tier response path:
Merge to form final response

Front-end
response path:
Response
presentation

Mid-tier request path:
1.  Process query
2.  Launch clients to leaf µsrvs

Query

Query

Query

Query

Intermediate response

Intermediate response

Fig. 1: A typical OLDI application fan-out.

cal three-tier microservice structure employed by modern OLDI
applications. In this paper, we introduce a benchmark suite—
µSuite—of OLDI applications composed of three microservice
tiers that exhibit traits crucial for our study (sub-ms service
time, high peak request rate, scalable across cores, mid-tier
with fan-out to leaves). We use µSuite to study the OS/network
performance overheads incurred by mid-tier microservices.

µSuite includes four OLDI services that incorporate open-
source software: a content-based high dimensional search for
image similarity—HDSearch, a replication-based protocol
router for scaling fault-tolerant key-value stores—Router, a
service for performing set algebra on posting lists for document
retrieval—Set Algebra, and a user-based item recommender
system for predicting user ratings—Recommend. Each service’s
constituent microservices’ goal is to perform their individual
functionality in at most a few single-digit ms for large data sets.

Our main finding is that the relationship between optimal
OS/network parameters and service load is complex. We find that
non-optimal OS scheduler decisions can degrade microservice
tail latency by up to ∼ 87%.

In summary, we contribute:
• µSuite: A benchmark suite of OLDI services composed

of microservices built using a state-of-the-art open-source
RPC platform, which we release as open-source software 1.

• A comprehensive performance characterization of µSuite’s
key component: the mid-tier microservice.

II. PRIOR WORK

We propose µSuite as latency-critical services studied by prior
works are unsuitable to characterize microservices (Table I).

Closed-source. Many works [48], [97], [98], [101], [105],
[129], [130] use workloads internal to companies such as Google
or Facebook and hence do not promote further academic study.

Too few latency-critical workloads. Some academic studies
analyze only one latency-critical benchmark [84], [125], thereby
limiting the generality of their conclusions.

Not representative. Some works [62], [131] treat sequen-
tial/parallel workloads (e.g., SPEC CPU2006 [82]/PARSEC [55])

1https://github.com/wenischlab/MicroSuite

TABLE I: Summary of a comparison of µSuite with prior work.

Prior work Open-source µservice arch. Mid-tier study
SPEC [82] 3 7 7

PARSEC [55] 3 7 7
CloudSuite [71] 3 7 7
TailBench [88] 3 7 7

PerfKit [28] 3 7 7
Ayers et al. [48] 7 3 3

µSuite 3 3 3

as OLDI services. But, these workloads are not representative of
OLDI services as they intrinsically vary in terms of continuous
activity vs. bursty request-responses, architectural traits, etc.

Monolithic architectures. CloudSuite [71], PerfKit [28], and
TailBench [88] are perhaps closest to µSuite. CloudSuite focuses
on microarchitectural traits that impact throughput for both
latency-critical and throughput-oriented services. CloudSuite
largely incurs ≥ 100 ms tail latencies and is less susceptible
to sub-ms-scale OS/network overheads faced by microservices.
Moreover, CloudSuite load testers (YCSB [63] and Faban [11])
model only a closed-loop system [130], which is methodologi-
cally inappropriate for tail latency measurements [130] due to
the coordinated omission problem [121]. BigDataBench [127]
also lacks a rigorous latency measurement methodology, even
though it uses representative data sets. µSuite’s load testers
account for these problems and record robust and unbiased
latencies. CloudSuite, PerfKit, and TailBench employ monolithic
architectures instead of microservice architectures, making them
unsuitable to study overheads faced by microservices.

Target only leaves. Several studies target only OLDI leaf
servers [66], [84], [97], [98], [105], [111], [124], [125] as they
are typically most numerous. Hence, conclusions from these
works do not readily extend to mid-tier microservers.

Machine-learning based. Recent benchmark suites such as
Sirius [80] and Tonic [79] mainly scrutinize ML-based services
and incur higher latencies than microservices that µSuite targets.

III. µSUITE: BENCHMARKS DESCRIPTION

Although there are many open-source microservices, such as
Memcached [73], Redis [60], McRouter [22], etc., that can serve
as individual components of a service with a typical three-tier
front-end;mid-tier;leaf architecture, there are no representative
open-source three-tier services composed of microservices.
Hence, we develop four services in µSuite, each composed of
three microservices. To include services that dominate today’s
data centers in µSuite, we consider a set of information retrieval
(IR)-based internet services based on their popularity [44].

All µSuite services/benchmarks are built using a state-of-the-
art open-source RPC platform—gRPC [15].

A. HDSearch

HDSearch performs content-based image similarity search.
Like Google’s “find similar images” [14], this service searches
an image repository for matches with content similar to a user’s
query image. This technique entails nearest neighbor (NN)
matching in a high-dimensional abstract feature space to identify
images that have similar content to the query image.

Related work. High dimensional search is an intrinsic part
of many user-facing OLDI services, and hence its accuracy
and performance have been extensively studied. Many prior
works [53], [54], [56], [61], [96], [104], [113] improve high
dimensional search via tree-based indexing. Since data sets are
growing rapidly in both size and dimensionality, tree-based
indexing techniques that are efficient for modest dimensionality
data sets no longer apply. Instead, hashing-based indexing
that exploits data locality are now more common [45], [52],
[70], [100], [114], [115], [119], [120], [122]. Another indexing
algorithm class clusters adjacent data [68], [72], [75], [86],
[94], [102], [106], [110]. These primarily theoretical works
explore high dimensional search’s algorithmic foundations; their
contributions are orthogonal to the software structure of a service
like HDSearch.

Service description. HDSearch indexes a corpus of 500K
images taken from Google’s Open Images data set [27].
Each image in the corpus is represented by a feature vector,
an n-dimensional numerical representation of image content.
Today, feature vectors summarizing each image are typically
obtained from a deep learning technique. We use the Inception
V3 neural network [118] implemented in TensorFlow [43] to
represent each data set image in the form of a 2048-dimensional
feature vector. The data set size is ∼ 10 GB.

One can find images similar to a query image by searching
the corpus for response images whose feature vectors are
near the query image’s feature vector [92], [93]. Proximity
is identified by distance metrics such as Euclidean or Hamming
distance. The goal of HDSearch’s constituent microservices is
to perform this image search functionality in at most a few single-
digit milliseconds for a large image repository. We describe
HDSearch’s constituent microservices below.

Front-end microservice. HDSearch’s front-end presenta-
tion microservice is not studied in this work; we describe its
components only to provide brief context (Fig. 2).

Send query

to backend

Query image
Image	
 –>Feature	

Vector	

Cache

Hit

Miss Extract
feature vector

Add
to cache

Send query to backend

Response

k-NN (point IDs) Serve response

images

k-NN
responses

End user

Web app

Fig. 2: HDSearch: front-end presentation microservice.

Web application. The web application is merely a useful
interface that allows the end-user to upload query images to the
front-end microserver and view received query responses.

Feature Extraction. The query image is initially transformed
into a discriminative intermediate feature vector representation.
We employ Google’s Inception V3 neural network [118],

Top k-NN IDs

Front-end

HDSearch
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s k-NN IDs

Mid-tier response path:
Merge to form final k-NN

Front-end
response path:
Identify
& display images

Mid-tier request path:
1. LSH lookup
2. Map point ids -> leaf µsrvs
3. Launch clients to leaf µsrvs

Query

Query + point IDs

Query + point IDs

Query + point IDs

Leaf 2’s k-NN IDs

Leaf 3’s k-NN IDs

Fig. 3: HDSearch: back end request and response pipelines.

implemented in TensorFlow [43], to extract a feature vector
for the query image. This feature vector is sent to the mid-tier
microservice to retrieve the IDs of k-NN images. This query is
the object of study for HDSearch in this paper.

Feature Vector Caching. To minimize feature vector extraction
time, a mapping from images to feature vectors is cached in a
Redis [60] instance, avoiding repeated feature computations.

Response Image Look-up. Once the query returns, a second
Redis [60] instance is consulted to map image IDs to URLs.
The presentation microservice then constructs a response web
page and returns it to the web application.

Mid-tier microservice. Solving the k-NN problem efficiently
is hard due to the curse of dimensionality [85], and the problem
has been studied extensively [45], [52], [76], [100], [114], [119],
[120], [122]. To prune the search space, modern k-NN algorithms
use indexing structures, such as Locality-Sensitive Hash (LSH)
tables, kd-trees, or k-means clusters to exponentially reduce the
search space relative to brute-force linear search.
HDSearch’s mid-tier microservice uses LSH, an indexing

algorithm that optimally reduces the search space within precise
error bounds [45], [46], [52], [65], [70], [76], [100], [114], [115],
[119], [120], [122]. We extend the LSH algorithm from the
most widely-used open-source k-NN library—the Fast Library
for Approximate Nearest Neighbors (FLANN) [107]—into
HDSearch’s mid-tier. During an offline index construction
step, we construct multiple LSH tables for our image corpus.
Each LSH table entry contains points that are likely to be near
one another in the feature space. Most LSH algorithms use
multiple hash tables, and access multiple entries in each hash
table, to optimize the performance vs. error trade-off [100].

We extend FLANN’s [107] LSH indexes such that the mid-
tier microservice does not store feature vectors directly. Rather
the LSH tables reference {leaf server, point ID list} tuples,
which indirectly refer to feature vectors stored in the leaves.

During query execution, the mid-tier performs look-ups in
its in-memory LSH tables to gather potential NN candidates,
as shown in Fig. 3. It formulates an RPC request to each
leaf microserver with a list of point IDs that may be near
the query feature vector. Each leaf calculates distances and
returns a distance-sorted list. The mid-tier then merges these

Fig. 4: HDSearch: request (left) and 1-NN response (right): response’s
highlighted circular segment illustrates why the images matched.

responses and returns the k-NN across all shards. We quantify
HDSearch’s accuracy in terms of the cosine similarity between
the feature vector it reports as the NN for each query and ground
truth established by a brute-force linear search of the entire data
set. Various LSH parameters can be tuned based on accuracy
and latency needs. We tune these LSH parameters to target
a sub-ms end-to-end median response time with a minimum
accuracy score of 93% across all queries.

Leaf microservice. Distance computations are embarrass-
ingly parallel, and can be accelerated with SIMD, multi-
threading, and distributed computing techniques [93]. We employ
all of these. We distribute distance computations over many
leaves until the computation time and network communication
are roughly balanced. Hence, the mid-tier microservice latency,
and its ability to fan out RPCs quickly, is so critical: mid-tier
microservice and network overheads limit leaf scalability.

Leaf microservers compare query feature vectors against point
lists sent by the mid-tier. We use the Euclidean distance metric,
which has been shown to achieve a high accuracy [76]. A sample
request and response are shown in Figure 4.

B. Router

Memcached-like key-value stores are widely used by OLDI
services as they are highly performant and scalable [23].
However, memcached has many drawbacks: (1) its servers
are a single point of failure [30] causing frequent fallback
to an underlying database access, (2) it is not scalable beyond
200K Queries Per Second (QPS) [23], and (3) it faces network
saturation due to network congestion-based timeouts [30].
Memcached must be made as available and performant as the
database it assists. These goals can be achieved by distributing
load across many memcached servers via efficient routing.
Routing-based redundancy can avoid the failure issue.

Related work. McRouter [22] is one such memcached
protocol router that helps scale memcached deployments at
Facebook. Through efficient routing, McRouter [22] can handle
up to 5 billion QPS. It offers connection pooling, prefix
routing, replicated pools, production traffic shadowing, online
reconfiguration, etc. We introduce a µSuite service called
Router that includes a simplified subset of McRouter’s features
while still drawing insights from McRouter.

Service description. Router’s features include (1) routing
key-value stores to memcached deployments, (2) abstracting the
routing and redundancy logic from clients, allowing clients to

use standard memcached protocols, (3) requiring minimal client
modification (i.e., it is a drop-in proxy between the client and
memcached hosts), and (4) providing replication-based protocol
routing for fault-tolerant memcached deployments.
Router’s primary functionality is to route client requests to

suitable memcached servers. It supports typical memcached [73]
client requests. In this study, we evaluate only gets and sets.
We describe Router’s functionality as a series of stages. In the
first stage, Router parses the clients’ requests and forwards
them to the route computation code, which uses a proven well-
distributed hashing algorithm, SpookyHash [7], to distribute keys
from clients’ get or set requests uniformly across destination
memcached servers. SpookyHash [7] is a non-cryptographic
hash function that is used to produce well-distributed 128-
bit hash values for byte arrays of any length. Router uses
SpookyHash [7] as it (1) enables quick hashing (1 byte/cycle
for short keys and 3 bytes/cycle for long keys), (2) can work
for any key data type, and (3) incurs a low collision rate. Based
on the SpookyHash [7] outcome, Router invokes its final
stage where it calls internal client code to suitably forward
the clients’ requests to specific destination memcached servers.
The internal client code opens only one TCP connection to a
given destination per Router thread. All requests sent to that
memcached server will share the same connection.
Router also provides fault-tolerance for memcached. For

large-scale memcached deployments, the frequently-accessed
data are read by numerous clients. Too many concurrent client
connections may overwhelm a memcached server. Furthermore,
ensuring high availability of critical data even when servers go
down is challenging. Router uses replicated key-value store
data pools, detailed below, to solve both these problems.

Front-end microservice. Our front-end microservice pro-
vides a client library that transports memcached get/set
requests over a gRPC [15] interface. We do not study the front-
end in this work. We emulate a large pool of Router clients
using a synthetic load generator that picks key or key-value pair
queries from an open-source “Twitter” data set [71]. The load
generator’s get and set request distributions mimic YCSB’s
Workload A [63] with 50/50 gets and sets.

Mid-tier microservice. The mid-tier uses SpookyHash to
distribute keys uniformly across leaves and then routes get
or set requests as shown in Fig. 5. Router uses replication
both to spread load and to provide fault tolerance. Router’s
mid-tier forwards sets to a fixed number of leaves (i.e., a
replication pool; three replicas in our experiments), allowing the
same data to reside on several leaves. The mid-tier randomly
picks a leaf replica to service get requests, balancing load
across leaves.

Leaf microservice. The leaf microserver uses gRPC [15] to
build a communication wrapper around a memcached [73] server
process. The leaf microservice is written such that it can handle
multiple concurrent requests from several mid-tier microservices.
The leaf uses gRPC APIs to receive the mid-tier’s get and
set queries. It then rewrites received queries to suitably query
its local memcached server. The memcached server’s responses

“Set” ack

Front-end

Router
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s “set” ack

Mid-tier response path:
Merge leaf responses

Front-end
response path:
Receive get/set
response

Mid-tier request path:
1. Spookyhash
2. Map get/set -> leaf µsrvs
3. Launch clients to leaf µsrvs

Query “Set” query to replica 2

“Set” query to replica 1

Leaf 2’s “set” ack

Fig. 5: Router: back end request and response pipelines.

are then sent to the mid-tier via the gRPC [15] response.

C. Set Algebra

Fast processing of set intersections is a critical operation
in many query processing tasks in the context of databases
and information retrieval. For example, in the database realm,
set intersections are used for data mining, text analytics, and
evaluation of conjunctive predicates. They are also the key
operations in enterprise and web search.

Related work. Many open-source web search platforms, such
as Lucene [103] and CloudSuite’s Web Search [71], perform set
intersections for document retrieval. But, these monolithic web
searches face response latencies ≥ 100 ms as they perform many
other tasks (querying a database, scoring page ranks, custom
filtering, etc.) apart from set intersections. Hence, these searches
are unsuitable for characterizing microservice OS/network
overheads. While Set Algebra draws algorithmic insights
from these works [71], [103], its microservices only perform
set intersections to achieve single-digit ms tail latencies.

Service description. Set Algebra performs document
retrieval for web search by performing set intersections on
posting lists. The posting list of each term is a sorted list of
document identifiers that is stored as a skip list [112]. A skip
is a pointer i→j between two non-consecutive documents i
and j in the posting list. The number of documents skipped
between i and j is defined as the skip size. For a term t, the
posting list L(t) is a tuple (St ,Ct) where St = s1,s2, ...,sk is a
sequence of skips and Ct contains the remaining documents
(between skips). These remaining documents can be stored using
different compression schemes [132] where decompression can
be handled by a separate microservice. Skips are typically used
to speed up list intersections.
Set Algebra searches through a corpus of 4.3 million

WikiText documents (of size ∼ 10 GB) randomly drawn from
Wikipedia [41] and sharded uniformly across leaves, to return
documents containing all search terms to the client. Leaves index
posting lists for each term in their sharded document corpus.
We reduce leaf computations by excluding extremely common
terms, called stop words, that have little value in helping select
documents matching a user’s need from the leaves’ inverted

Final posting list
Front-end

Set Algebra
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s posting list

Mid-tier response path:
Set union on posting lists
received from leaves

Front-end
response path:
Receive final
posting list

Mid-tier request path:
1.  Forward search terms to

leaf µsrvs
2.  Launch clients to leaf µsrvs

Query

Query of search terms

Query of search terms

Query of search terms

Leaf 2’s posting list

Leaf N’s posting list

Fig. 6: Set Algebra: back end request and response pipelines.

index. Set Algebra determines a stop list by sorting terms
by their collection frequency (the total number of times each
term appears in the document collection), and then regarding
the most frequent terms as a stop list. Members of the stop list
are discarded during indexing.

Front-end microservice. We synthetically emulate multiple
clients via a load generator that picks search queries from a
query set. Each search query typically spans ≤ 10 words [6].
We synthetically generate a query set of 10K queries, based on
Wikipedia’s word occurrence probabilities [41].

Mid-tier microservice. The mid-tier forwards client queries
of search words/terms to the leaves, which return intersected
posting lists to the mid-tier, as portrayed in Fig. 6. It then
merges intersected posting lists received from all leaves via set
union operations and sends the outcome to the client.

Leaf microservice. The leaf microservice performs actual set
intersections. Leaves hold ordered posting lists as an inverted
index where documents are identified via a document ID, and
for each term t, the inverted index is a sorted list of all document
IDs containing t. Using this representation, the leaves intersect
two sets L1 and L2 using a linear merge by scanning both lists
in parallel, requiring an O(|L1|+ |L2|) time complexity (“merge”
step in merge sort). The resulting intersected posting list is then
passed to the mid-tier.

D. Recommend.

Recommendation systems help real-world services generate
revenue, notably in the fields of e-commerce and behavior
prediction [10]. Many web companies use smart recommender
engines that study prior user behaviors to provide preference-
based data, such as relevant job postings, movies of interest,
suggested videos, friends users may know, items to buy, etc.

Related work. Many open-source recommendation engines
such as PredictionIO [31], Raccoon [32], HapiGER [17],
EasyRec [2], Mahout [21], Seldon [37], etc., use various
recommendation algorithms. But, they lack the distributed
microservice structure (i.e, front-end, mid-tier, and leaf) that we
aim to study. So, we build Recommend using the state-of-the-
art fast, flexible open-source ML library—mlpack [64] such
that Recommend is composed of distributed microservices.

Service description. Recommend is a recommendation
service that uses numerous users’ overall preference to predict
user ratings for specific items. For each {user, item} query
pair, Recommend performs user-based collaborative filtering
to predict the user’s preference for that item, based on how
similar users ranked the item. Collaborative filtering is typi-
cally performed on {user, item, rating} tuple data sets. Our
collaborative filtering technique has three stages of (1) sparse
matrix composition, (2) matrix factorization, and (3) rating
approximations for missing entries in the sparse matrix (e.g., a
movie that a user has not rated) via a neighborhood algorithm.

Sparse matrix composition. Recommend’s data set is 10K
{user, item, rating} tuples from the MovieLens [78] movie
recommendation data set. We represent the data set as a sparsely
populated user-item rating matrix V ∈Rm×n—the utility matrix—
where m is the number of users and n is the number of items
(i.e., movies) in the data set. Hence, Vi j (if known), represents
the rating of movie j by user i. Each user typically rates a
small subset of movies. Many techniques address the cold start
problem of recommending to a fresh user with no prior ratings.
For simplicity, Recommend only focuses on users for whom
the system has at least one rating.

Matrix factorization. Collaborative filtering often uses matrix
factorization. For instance, a matrix factorization model won
the Netflix Challenge in 2009 [91]. Matrix factorization’s
goal is to reduce the sparse user-item rating utility matrix
V ’s dimensionality and to aid similarity identification. We
decompose the sparse low-rank matrix V into two “user” and
“item” matrices W and H. These decomposed matrices aim to
approximate missing values in the utility matrix V .

We employ Non-negative Matrix Factorization (NMF) to
decompose V . NMF performs V ≈ WH to create two non-
negative matrix factors W and H of V . NMF approximately
factorizes V into an m× r matrix W and r×n matrix H.

V =


v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n

...
...

. . .
...

vm,1 vm,2 . . . vm,n

=WH where,

Wm×r =


w1,1 w1,2 . . . w1,r
w2,1 w2,2 . . . w2,r

...
...

. . .
...

wm,1 wm,2 . . . wm,r

 , Hr×n =


h1,1 h1,2 . . . h1,n
h2,1 h2,2 . . . h2,n

...
...

. . .
...

hr,1 hr,2 . . . hr,n


Dimension r is V ’s rank, and it represents the number of

similarity concepts NMF identifies [67]. For example, one
similarity concept may be that some movies belong to the
“comedy” category, while another may be that most users that
liked the movie “Harry Potter 1” also liked “Harry Potter
2”. W captures the correlation strength between a row of V
and a similarity concept—it expresses how users relate to
similarity concepts such as preferring “comedy” movies. H
captures the correlation strength of a column of V to a similarity
concept—it identifies the extent to which a movie falls in the
“comedy” category. The NMF representation, hence, results in
a compressed form of the user-item rating utility matrix V .

Final rating
Front-end

Recommend
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s rating

Mid-tier response path:
Average of ratings
received from leaves

Front-end
response path:
Receive final
rating

Mid-tier request path:
1.  Forward user,item pair to

leaf µsrvs
2.  Launch clients to leaf µsrvs

Query

Query: user,item

Query: user,item

Query: user,ite
m

Leaf 2’s rating

Leaf N’s rating

Fig. 7: Recommend: back end request and response pipelines.

Neighborhood algorithm. The NMF decomposed matrix is
used to approximate missing movie ratings in the user-item
rating utility matrix V . We also remember the initial movies that
the users rated. We use a neighborhood algorithm, allknn [64],
which relies on similarity measures such as cosine, Pearson,
Euclidean, etc., to generate ratings for movies in a user’s
neighborhood. This algorithm can also be further extended
to recommend items which were not rated by the user.

Front-end microservice. We emulate multiple Recommend
clients via a load generator that picks 1K {user, item} query pairs
from the MovieLens [78] movie recommendation data set.
The {user, item} query pairs are different from the user→item
rating mappings present in the data set (utility matrix). In other
words, the load generator always picks queries from the “empty”
cells of the utility matrix V so that we do not test on the same
data that Recommend trained on.

Mid-tier microservice. Recommend uses the mid-tier mi-
croservice primarily as a forwarding service, as shown in Fig. 7.
The mid-tier microserver receives {user, item} query pairs from
the client and forwards them to the leaves. Item ratings returned
by the leaves are then averaged and sent back to the client.

Leaf microservice. Leaves perform collaborative filtering
by first performing sparse matrix composition and matrix
factorization offline. During run-time, they perform collaborative
filtering on their corresponding matrix V ’s shard using the allknn
neighborhood approach [64], to predict movie ratings. Rating
predictions are then sent to the mid-tier.

IV. µSUITE: FRAMEWORK DESIGN

In this section, we discuss the software designs used to build
µSuite’s mid-tier microservers.

Thread-pool architecture. µSuite has a thread-pool architec-
ture that concurrently executes requests by judiciously “parking”
and “unparking” threads to avoid thread creation, deletion, and
management overheads. µSuite uses thread-pool architectures
(vs. architectures like thread-per-connection), as thread-pool
architectures scale better for microservices [95].

We describe the following µSuite framework designs with
the aid of a simple figure (Fig. 8) of a three-tier service with
a single client, mid-tier, and leaf.

Front-end server

Request

Network poller:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier server Leaf server

Leaf
computations

Response

Network (client)
socket

Network (server)
socket

Resp. pick-up
thread:

<block>

Fig. 8: µSuite’s mid-tier microservice design.

Blocking on the front-end network socket. µSuite’s block-
ing design comprises network poller threads awaiting new work
from the front-end via blocking system calls, yielding CPU if no
work is available. Threads block on I/O interfaces (e.g., read()
or epoll() system calls) awaiting work. Blocking designs
conserve precious CPU resources by avoiding wasting CPU time
in fruitless poll loops, unlike poll-based designs. Hence, services
such as Redis BLPOP [33] employ a block-based design.

Asynchronous communication with leaf microservers.
There is no association between an execution thread and a
particular RPC—all RPC state is explicit. Asynchronous
services are event-based—an event, such as the completion of
an outgoing leaf request, arrives on any leaf response reception
thread and is matched to a particular parent RPC through a
shared data structure. Hence, mid-tier microservers can proceed
to process successive requests after sending requests to leaf
microservers. We build µSuite asynchronously to leverage the
greater performance efficiency that asynchronous designs offer
compared to synchronous ones [128]. For this reason, several
cloud applications such as Apache [4], Azure blob storage [24],
Redis replication [34], Server-Side Mashup, CORBA Model,
and Aerospike [5] are built asynchronously.

Dispatch-based processing of front-end requests. µSuite’s
dispatch-based design separates responsibilities between network
threads, which accept new requests from the underlying RPC
interface, and worker threads, which execute RPC handlers.
Network threads dispatch the RPC to a worker thread pool
by using producer-consumer task-queues and signalling on
condition variables. Workers pull requests from task queues,
and then process them by forking for fan-out and issuing
asynchronous leaf requests. A worker then goes back to blocking
on the condition variable to await new work. To aid non-
blocking calls to both leaves and front-end microservers, we
add another thread pool that exclusively handles leaf server
responses. These response threads count-down and merge leaf
responses. We do not explicitly dispatch responses, as all but
the last response thread do negligible work (stashing a response
packet and decrementing a counter). Several cloud applications

TABLE II: Mid-tier microservice hardware specification.

Processor Intel Gold 6148 CPU “Skylake”
Clock frequency 2.40 GHz

Cores / HW threads 40 / 80
DRAM 64 GB
Network 10 Gbit/s

Linux kernel version 4.13.0

such as IBM’s WebSphere for z/OS [40], [83], Oracle’s EDT
image search [39], Mule ESB [9], Malwarebytes [16], Celery
for RabbitMQ and Redis [8], Resque [35] and RQ [36] Redis
queues, and NetCDF [74] are dispatch-based.

V. METHODOLOGY

In this section, we describe the experimental setup that we
use to characterize µSuite’s OS and network overheads.

We characterize each service in terms of its constituent mid-
tier and leaf microservices. We use service-specific synthetic
load generators that mimic many end-users to issue queries to
the mid-tier. These load generators are operated in a closed-loop
mode to establish each service’s peak sustainable throughput.
We measure tail latencies by operating the load generators in
an open-loop mode, selecting inter-arrival times from a Poisson
distribution [59]. Load generators are run on separate hardware
and we validated that neither the load generator nor the network
bandwidth is a performance bottleneck in our experiments. We
average measurements over five trials.

We run experiments on a distributed system of a load gener-
ator, a mid-tier microservice, and (1) four-way sharded leaf mi-
croservice for HDSearch, Set Algebra, and Recommend
and (2) 16-way sharded leaf microservice with three replicas
for Router. Our setup’s hardware configuration is shown in
Table II. The leaves run within Linux tasksets limiting
them to 18 logical cores for HDSearch, Set Algebra,
and Recommend and 4 logical cores for Router. Each
microservice runs on dedicated hardware. The mid-tier is not
CPU bound; peak-load performance is limited by leaf CPU.

On this setup, we run load generators in open loop mode
to characterize OS and network overheads for various loads.
We use the eBPF [1] syscount tool to first characterize
system call invocations for the mid-tier. We then study request
latency breakdowns incurred within the OS (e.g., interrupt
handler latency for network-based hard interrupts and scheduler-
based soft interrupts, time to switch a thread from “active” to
“running” state, etc.) using eBPF’s [1] hardirqs, softirqs,
and runqlat tools. We report network delays in terms of the
number of TCP re-transmissions measured using eBPF [1]’s
tcpretrans tool. Additionally, we use Linux’s perf utility
to profile context switch overheads faced by the mid-tier. We
use Intel’s HITM (as in hit-Modified) PEBS coherence event,
to detect true sharing of cache lines; an increase in HITMs
indicates a corresponding increase in lock contention [99].

VI. RESULTS

A. Saturation throughput
Production services typically saturate at tens of thousands

QPS [13]. µSuite aims to be representative of production

0"

5000"

10000"

15000"

20000"

HDSearch" Router" Set"algebra" Recommend"

Sa
tu
ra
8o

n"
th
ro
ug
hp

ut
"(Q

PS
)"

Workload"

Fig. 9: Saturation throughput (QPS): µSuite is similar to real-world services.

Load (Queries Per Second)

HDSearch Router Set Algebra Recommend

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Load (Queries Per Second)

E
nd

-to
-e

nd
 la

te
nc

y
di

st
rib

ut
io

n
(m

s)

Fig. 10: End-to-end response latency across different loads for each benchmark:
median latency is higher at low load.

services by achieving a similar saturation throughput range
for each of its benchmark services. Using our load generator in
closed-loop mode, we measure the saturation throughput for all
benchmarks. We find that HDSearch saturates at ∼ 11.5K QPS,
Router at ∼ 12K QPS, Set Algebra at ∼ 16.5K QPS, and
Recommend at ∼ 13K QPS, as shown in Fig. 9. Hence, we find
that µSuite is sufficiently representative of production services.

B. End-to-end response latency

Many OLDI services face (1) drastic diurnal load changes [81],
(2) load spikes due to “flash crowds” (e.g., traffic after a
major news event), or (3) explosive customer growth that
surpasses capacity planning (e.g., the Pokemon Go [29] launch).
Supporting wide-ranging loads aids rapid OLDI service scale-
up. Furthermore, we cannot meaningfully measure latency at
saturation, as the offered load is unsustainable and queuing
grows unbounded. Hence, we characterize µSuite’s end-to-end
(across mid-tier and leaves) response latency vs. load trade-off
(Fig. 10) across wide-ranging loads up to saturation—100 QPS,
1K QPS, and 10K QPS.

Each end-to-end response latency distribution is portrayed
as a violin plot with the bars in the violin centers representing
the median latency and the thin black lines representing the
higher-order tail latency. While the tail latency increases with an
increase in load, we find that the median latency at 100 QPS is
up to 1.45× higher than the median latency at 1,000 QPS since
there is better temporal locality at a higher load and the OS

0"

500"

1000"

1500"

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"

rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

HDS:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

HDSearch

Fig. 11: HDSearch’s counts of OS system call invocations per QPS: the futex
system call is predominantly invoked.

0"

500"

1000"

1500"

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"

rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

Router:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

Router

Fig. 12: Router’s counts of OS system call invocations per QPS: the futex
system call is predominantly invoked.

does not tend to “sleep” longer before waking-up threads. We
explain this behavior further when we subsequently characterize
µSuite’s OS and network overheads. Additionally, we note that
the worst-case end-to-end tail latency is never more than 22 ms
for any service, implying that the constituent microservices face
a worst-case tail latency of at most a few single-digit ms.

C. OS and network overheads

For each service, we show a breakdown of (1) number
of invocations of heavily-invoked system calls, (2) latency
distributions across OS and network stacks, (3) network delays
due to TCP re-transmissions, and (4) OS-induced effects such
as context switches and thread contention. As before, we
characterize the OS and network overheads at three distinct
loads of 100 QPS, 1,000 QPS and 10,000 QPS.

System call invocations. We first analyze various system
call invocation distributions per QPS for µSuite in Figs. 11,
12, 13, 14. We find that futex (fast userspace mutex) system
calls are invoked most frequently by all services. Our services
involve (1) network threads locking the front-end query reception
network sockets, (2) response threads locking the leaf response
reception network socket, and (3) worker threads blocking on
producer-consumer task queues via condition variables, while
awaiting new work. These high-level locking abstractions result
in several futex system call invocations. Furthermore, we find,
much like the end-to-end median latency distribution, futex
invocations per QPS are higher at low load. At low load, several
threads invoke futex(), but, only one thread successfully acquires
the synchronization object the futex() protects (e.g., network
socket lock). The remaining threads wake up and try to acquire
the network socket lock via further futex() calls. Hence, for
a small queries per second count (low load), a relatively large
number of futex() calls are invoked by various thread pools.

0"

500"

1000"

1500"

Sy
sca
ll""

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"
rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

Set"Algebra:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

Set Algebra

Fig. 13: Set Algebra’s counts of OS system call invocations per QPS: the futex
system call is predominantly invoked.

0"

500"

1000"

1500"

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"
rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

Recommend:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

Recommend

Fig. 14: Recommend’s counts of OS system call invocations per QPS: the futex
system call is predominantly invoked.

We also see several sendmsg, recvmsg, and epoll_pwait
invocations as these system calls are regularly invoked by
blocking network/worker/response threads to send/receive RPCs
on the incoming/outgoing network sockets.

Overheads due to OS operations. We next scrutinize
latency distributions of fine-grained OS operations performed
while serving mid-tier requests. We study these latencies across
various loads for each service, as shown in Figs. 15, 16, 17, 18.
In each graph, the x-axis represents various OS overheads, and
the y-axis shows the latency distribution across all mid-tier
requests served in a 30s time frame, represented as a violin plot.
The various OS overheads are: (1) Hardirq—interrupt handler
latency while receiving hard network interrupts, (2) Net_tx—soft
interrupt handler latency while sending network messages, (3)
Net_rx—soft interrupt handler latency while receiving network
messages, (4) Block—soft interrupt handler latency while a
thread enters the “blocked” state, (5) Sched—soft interrupt
handler latency while triggering scheduling actions, (6) RCU—
soft interrupt handler latency for read-copy-updates, (7) Active-
Exe—time from when a thread enters the active or runnable
state to when it starts running on a CPU, and (8) Net—net
mid-tier latency.

We find that µSuite’s mid-tier tail latencies arise mainly from
the OS scheduler. Active-Exe contributes to mid-tier tails by up
to ∼ 50% for HDSearch, ∼ 75% for Router, ∼ 87% for Set
Algebra, and ∼ 64% for Recommend. These latencies are a
part of thread wakeup delays and can arise from (1) network
thread wakeups via interrupts on query arrivals, (2) worker
wakeups upon RPC dispatch, or (3) response thread wakeups
upon leaf response arrivals. We also see some Sched overheads.

Context switch and thread contention overheads. We next
analyze µSuite’s context switch (CS) and thread contention

Load = 100 QPS Load = 1K QPS Load = 10K QPS

HDSearch

Fig. 15: HDSearch’s breakdown of OS overheads: time to switch a thread from
the active to the running state is high.

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Router

Fig. 16: Router’s breakdown of OS overheads: time to switch a thread from
the active to the running state is high.

(HITM) overheads across all three loads in Fig. 19. We
find that the CS and HITM overheads are similar for all
µSuite services (“HDS”—HDSearch, “SA”—Set Algebra,
and “Rec”—Recommend)—both overheads increase as load
increases. HITM counts are more than CS counts as various
threads are woken up when a futex returns, and they all contend
with each other while trying to acquire a network socket lock.

Additionally, we see only a single-digit number of TCP re-
transmissions for all services, and hence do not report it.

VII. DISCUSSION

We briefly discuss how µSuite can facilitate future research.
Latency degradation caused by blocking designs. µSuite

blocks on the front-end request reception network socket and
leaf response reception sockets. We choose this design since
polling can be prohibitively expensive as it wastes CPU time in
fruitless poll loops, degrading a data center’s energy efficiency.
However, our results show that blocking incurs OS-induced
thread wakeup latencies that significantly degrade microservice
tail latency. Hence, it would be interesting to explore policies that
trade-off blocking vs. polling, either statically or dynamically.

Set Algebra

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Fig. 17: Set Algebra’s breakdown of OS overheads: time to switch a thread
from the active to the running state is high.

Recommend

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Fig. 18: Recommend’s breakdown of OS overheads: time to switch a thread
from the active to the running state is high.

Future microservice monitoring systems could then dynamically
switch between block- and poll-based designs.

Thread wakeups due to dispatch-based designs. Thread
wakeup latencies that dominate microservice latency tails arise
from both (1) network threads picking up requests from the
front-end socket and (2) workers waking up to receive dispatched
requests. In-line designs that avoid explicit state hand-off and
thread-hops to pass work from network to worker threads
may avoid expensive thread wakeups. However, in-line models
are only efficient at low loads and for short requests where
dispatch overheads undermine service times. Since leaf nodes
computationally dominate in most distributed services, most
mid-tiers can benefit from dispatching. Moreover, if a single
in-line thread cannot sustain the service load, multiple in-
line threads contending for work will typically outweigh the
dispatch design’s hand-off costs, which can be carefully tuned.
Additionally, in-line models are prone to high queuing, as
each thread processes whichever request it receives. In contrast,
dispatched models can explicitly prioritize requests. Exploring
policies that trade-off in-line vs. dispatched designs can help
build a dynamic adaptation system that judiciously chooses to

0	

5	

10	

15	

20	

25	

30	

100	
 1000	
 10000	

Co
un

ts
	
 (i
n	

m
ill
io
ns
)	

Load	
 (Queries	
 Per	
 Second)	

HDS	
 CS	
 HDS	
 HITM	
 Router	
 CS	
 Router	
 HITM	
 SA	
 CS	
 SA	
 HITM	
 Rec	
 CS	
 Rec	
 HITM	

Fig. 19: Context switches (CS) and thread contention (HITM) incurred (in
millions) for each benchmark across diverse loads: thread contention is high.

dispatch requests. It may also be interesting to study request
dispatch ways to identify optimal microservice dispatch designs.

Thread pool sizing. µSuite’s design supports large thread
pools that sustain peak loads by “parking” or “unparking” on
condition variables, as needed. However, these large pools can
contend on (1) the front-end socket while receiving requests, (2)
the producer-consumer task queue while picking up dispatched
requests, or (3) the leaf response reception socket. Hence, a
user-level thread scheduler that dynamically selects suitable
thread pool sizes can reduce thread contention and improve
scalability. While prior works [77], [89] propose several ways
to dynamically scale thread pools, it will still be interesting to
study such schedulers in the context of microservices.

VIII. CONCLUSION

Prior works study monolithic services, where sub-ms-scale
overheads are insignificant. Faster I/O and lower latency
in microservices call for characterizing the sub-ms-regime’s
OS and network effects. However, widely-used open-source
benchmark suites are unsuitable for this characterization as
they use monolithic architectures and incur ≥ 100 ms service
latencies. Hence, in this work, we presented µSuite, a suite
of microservice benchmarks that allow researchers to explore
performance, power, micro-architectural, etc., overheads in
modern microservices. Our results demonstrated how µSuite
can be used to characterize microservice performance. Our OS
and network characterization revealed that the OS scheduler can
influence microservice tail latency by up to 87%.

IX. ACKNOWLEDGEMENT

We would like to thank our shepherd, Dr. Ravi Soundararajan,
and the anonymous reviewers for their valuable feedback. We
also acknowledge Amrit Gopal, P.R. Sriraman, Rajee Sriraman,
Akshay Sriraman, and Vaibhav Gogte for their unwavering
support. This work was supported by NSF Grant IIS1539011
and gifts from Intel.

REFERENCES

[1] Linux bcc/BPF Run Queue Latency. http://www.brendangregg.com/blog/
2016-10-08/linux-bcc-runqlat.html. [Accessed 19-Nov-2017].

[2] Add reco. to website. www.easyrec.org. [Accessed 4/27/2018].
[3] Amazon. https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-

got-right-the-platform/. [Accessed 4/27/2018].

http://www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html
http://www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html

[4] Apache http server. https://httpd.apache.org/. [Accessed 11/7/2017].
[5] Asynchronous API. https://www.aerospike.com/docs/client/java/usage/async/.

[Accessed 11/7/2017].
[6] Average number of search terms for online search queries in the

US. https://www.statista.com/statistics/269740/number-of-search-terms-
in-internet-research-in-the-us/. [Accessed 4/20/2018].

[7] Bob Jenkins. SpookyHash: a 128-bit noncryptographic hash. http://
burtleburtle.net/bob/hash/spooky.html. [Accessed 3/1/2012].

[8] Celery. http://www.celeryproject.org/. [Accessed 11/7/2017].
[9] Chasing the bottleneck. https://blogs.mulesoft.com/biz/news/chasing-the-

bottleneck-true-story-about-fighting-thread-contention-in-your-code/.
[Accessed 11/7/2017].

[10] Collaborative filtering via matrix decomposition in mlpack.
www.ratml.org/pub/pdf/2015collaborative.pdf. [Accessed 4/27/2018].

[11] Faban. http://faban.org. [Accessed 27-Apr-2018].
[12] Gilt. www.infoq.com/presentations/scale-gilt. [Accessed 4/27/2018].
[13] Google Search Statistics. http://www.internetlivestats.com/google-search-

statistics/. [Accessed 11/7/2017].
[14] Google’s Similar Images. https://googleblog.blogspot.com/2009/10/similar-

images-graduates-from-google.html. [Accessed 11/7/2017].
[15] gRPC. https://github.com/heathermiller/dist-prog-

book/blob/master/chapter/1/gRPC.md. [Accessed 11/7/2017].
[16] Handling 1M Requests Per Minute. http://marcio.io/2015/07/handling-1-

million-requests-per-minute-with-golang/. [Accessed 11/7/2017].
[17] Hapiger. https://github.com/grahamjenson/hapiger. [Accessed 4/27/2018].
[18] Haskell. https://code.facebook.com/posts/745068642270222/fighting-

spam-with-haskell/. [Accessed 4/27/2018].
[19] Latency is everywhere and it costs you sales - how to crush

it. http://highscalability.com/blog/2009/7/25/latency-iseverywhere-and-it-
costs-you-sales-how-to-crush-it.html. [Accessed 11/7/2017].

[20] Linkedin. www.infoq.com/presentations/linkedin-microservices-urn. [Ac-
cessed 4/27/2018].

[21] Mahout. http://mahout.apache.org/. [Accessed 4/27/2018].
[22] McRouter. https://github.com/facebook/mcrouter. [Accessed 11/7/2017].
[23] Memcached performance. https://github.com/memcached/memcached/wiki.

[Accessed 4/27/2018].
[24] Microsoft Azure Blob Storage. https://azure.microsoft.com/en-

us/services/storage/blobs. [Accessed 11/7/2017].
[25] Myrocks. https://code.facebook.com/posts/190251048047090/myrocks-a-

space-and-write-optimized-mysql-database/. [Accessed 4/27/2018].
[26] Netflix. www.nginx.com/blog/microservices-at-netflix-architectural-best-

practices/. [Accessed 4/27/2018].
[27] OpenImages: A public dataset for large-scale multi-label and multi-class

image classification. https://github.com/openimages/dataset.
[28] PerfKit. https://github.com/GoogleCloudPlatform/PerfKitBenchmarker.

[Accessed 11/19/2017].
[29] Pokemon Go now the biggest mobile game in US history. http://www.

cnbc. com/2016/07/13/pokemon-go-now-the-biggest-mobile-game-in-us-
history. html. [Accessed 11/7/2017].

[30] The power of the proxy: Request routing memcached.
https://dzone.com/articles/the-power-of-the-proxy-request-routing-
memcached. [Accessed 4/27/2018].

[31] Pred.io. http://predictionio.apache.org/index.html. [Accessed 4/27/2018].
[32] Raccoon. www.npmjs.com/package/raccoon. [Accessed 4/27/2018].
[33] Redis BLPOP. https://redis.io/commands/blpop. [Accessed 11/7/2017].
[34] Redis Rep. https://redis.io/topics/replication. [Accessed 11/7/2017].
[35] Resque. https://github.com/defunkt/resque. [Accessed 11/7/2017].
[36] RQ. http://python-rq.org/. [Accessed 11/7/2017].
[37] Seldon. www.seldon.io/. [Accessed 4/27/2018].
[38] Soundcloud. https://developers.soundcloud.com/blog/building-products-

at-soundcloud-part-1-dealing-with-the-monolith. [Accessed 4/27/2018].
[39] SwingWorker in Java. www.oracle.com/technetwork/articles/javase/.

[Accessed 11/7/2017].
[40] Websphere. https://www.ibm.com/developerworks/community/

blogs/aimsupport/entry/dispatch_timeout_handling_in_websphere_
application_server_for_zos?lang=en. [Accessed 11/7/2017].

[41] Wiki. https://en.wikipedia.org/w/index.php?title=Plagiarismoldid=5139350.
[Accessed 4/20/2018].

[42] Thrift. https://github.com/facebook/fbthrift, 2017. [Accessed 11/7/2017].
[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker,
V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. CoRR, 2016.

[44] Alexa. Alexa, the web information company. [Accessed 27-Apr-2018].
[45] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. In FOCS, 2006.
[46] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt.

Practical and optimal lsh for angular distance. In Advances in Neural
Information Processing Systems. 2015.

[47] I. Arapakis, X. Bai, and B. B. Cambazoglu. Impact of response latency
on user behavior in web search. In SIGIR Conference on Research &
Development in Information Retrieval, 2014.

[48] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan. Memory hierarchy
for web search. In High Performance Computer Architecture, 2018.

[49] M. Barhamgi, D. Benslimane, and B. Medjahed. A query rewriting
approach for web service composition. IEEE Transactions on Services
Computing, 2010.

[50] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. Attack of the
killer microseconds. Commun. ACM, 2017.

[51] L. A. Barroso, J. Dean, and U. HÃűlzle. Web search for a planet: The
google cluster architecture. In IEEE Micro, 2003.

[52] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning indexes for
similarity search. In International conference on World Wide Web, 2005.

[53] S. Berchtold, C. Bohm, H. V. Jagadish, H.-P. Kriegel, and J. Sander.
Independent quantization: An index compression technique for high-
dimensional data spaces. In Data Engineering, 2000.

[54] S. Berchtold, D. Keim, and H. Kriegel. An index structure for high-
dimensional data. Multimedia computing and networking, 2001.

[55] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:
Characterization and architectural implications. In PACT, 2008.

[56] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases. ACM Comput. Surv., 2001.

[57] A. Bouch, N. Bhatti, and A. Kuchinsky. Quality is in the eye of the
beholder: Meeting users’ requirements for internet quality of service. In
Conference on Human Factors and Computing Systems, 2000.

[58] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, and H. C. Li. Tao: Facebook’s
distributed data store for the social graph. In USENIX ATC, 2013.

[59] J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web server performance
modeling using an m/g/1/k* ps queue. In Telecommunications, 2003.

[60] J. L. Carlson. Redis in Action. 2013.
[61] G.-H. Cha and C.-W. Chung. The gc-tree: a high-dimensional index

structure for similarity search in image databases. IEEE transactions on
multimedia, 2002.

[62] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic.
A hardware evaluation of cache partitioning to improve utilization and
energy-efficiency while preserving responsiveness. In ACM SIGARCH
Computer Architecture News, 2013.

[63] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In ACM Symposium on
Cloud Computing, 2010.

[64] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A.
Mehta, and A. G. Gray. MLPACK: A scalable C++ machine learning
library. Journal of Machine Learning Research, 2013.

[65] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Annual Symposium
on Computational Geometry, 2004.

[66] J. Dean and L. A. Barroso. The tail at scale. Commn. of ACM, 2013.
[67] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for

heterogeneous datacenters. In ASPLOS, 2013.
[68] H. Ding, Y. Liu, L. Huang, and J. Li. K-means clustering with distributed

dimensions. In ICML, 2016.
[69] N. Dmitry and S.-S. Manfred. On micro-services architecture. Interna-

tional Journal of Open Information Technologies, 2014.
[70] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li. Modeling

lsh for performance tuning. In ACM conference on Information and
knowledge management, 2008.

[71] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware.
In ASPLOS, 2012.

https://httpd.apache.org/
https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-us/
https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-us/
http://burtleburtle.net/bob/hash/spooky.html
http://burtleburtle.net/bob/hash/spooky.html
https://blogs.mulesoft.com/biz/news/chasing-the-bottleneck-true-story-about-fighting-thread-contention-in-your-code/
https://blogs.mulesoft.com/biz/news/chasing-the-bottleneck-true-story-about-fighting-thread-contention-in-your-code/
http://www.internetlivestats.com/google-search-statistics/
http://www.internetlivestats.com/google-search-statistics/
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
https://github.com/defunkt/resque
http://python-rq.org/
https://www.ibm.com/developerworks/community/blogs/aimsupport/entry/dispatch_timeout_handling_in_websphere_application_server_for_zos?lang=en
https://www.ibm.com/developerworks/community/blogs/aimsupport/entry/dispatch_timeout_handling_in_websphere_application_server_for_zos?lang=en
https://www.ibm.com/developerworks/community/blogs/aimsupport/entry/dispatch_timeout_handling_in_websphere_application_server_for_zos?lang=en
https://github.com/facebook/fbthrift

[72] X. Z. Fern and C. E. Brodley. Random projection for high dimensional
data clustering: A cluster ensemble approach. In ICML, 2003.

[73] B. Fitzpatrick. Distributed caching with memcached. Linux J., 2004.
[74] B. Furht and A. Escalante. Handbook of cloud computing. 2010.
[75] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering

in high dimensions: A texture classification example. In ICCV, 2003.
[76] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions

via hashing. In VLDB, 1999.
[77] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and K. S.

McKinley. Few-to-many: Incremental parallelism for reducing tail latency
in interactive services. In ASPLOS, 2015.

[78] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 2015.

[79] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, R. Dreslinski,
T. Mudge, J. Mars, and L. Tang. Djinn and tonic: Dnn as a service and
its implications for future warehouse scale computers. In ISCA, 2015.

[80] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Liv, A. Rovinski,
A. Khurana, R. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars.
Sirius: An open end-to-end voice and vision personal assistant and its
implications for future warehouse scale computers. In ASPLOS, 2015.

[81] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, and A. Kalro. Applied machine learning at
facebook: A datacenter infrastructure perspective. In HPCA, 2018.

[82] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comp.
Arch. News, 2006.

[83] E. N. Herness, R. J. High, and J. R. McGee. Websphere application
server: A foundation for on demand computing. IBM Sys. Journal, 2004.

[84] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, L. Tang,
J. Mars, and R. Dreslinski. Adrenaline: Pinpointing and reining in tail
queries with quick voltage boosting. In HPCA, 2015.

[85] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC, 1998.

[86] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace
clustering for high-dimensional data. In Proc. SDM, 2004.

[87] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks. Tradeoffs between
power management and tail latency in warehouse-scale applications. In
IISWC, 2014.

[88] H. Kasture and D. Sanchez. Tailbench: A benchmark suite and evaluation
methodology for latency-critical applications. In IISWC, 2016.

[89] S. Kim, Y. He, S.-w. Hwang, S. Elnikety, and S. Choi. Delayed-dynamic-
selective (dds) prediction for reducing extreme tail latency in web search.
In WSDM, 2015.

[90] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to
controlled experiments on the web. In KDD, 2007.

[91] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 2009.

[92] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for
approximate nearest neighbor in high dimensional spaces. STOC, 2000.

[93] V. T. Lee, C. C. del Mundo, A. Alaghi, L. Ceze, M. Oskin, and A. Farhadi.
NCAM: near-data processing for nearest neighbor search. CoRR, 2016.

[94] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold. Clustering
for approximate similarity search in high-dimensional spaces. IEEE
Transactions on Knowledge and Data Engineering, 2002.

[95] Y. Ling, T. Mullen, and X. Lin. Analysis of optimal thread pool size.
SIGOPS Oper. Syst. Rev., 2000.

[96] T. Liu, A. W. Moore, K. Yang, and A. G. Gray. An investigation of
practical approximate nearest neighbor algorithms. In NIPS, 2004.

[97] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis.
Towards energy proportionality for large-scale latency-critical workloads.
In ACM SIGARCH Computer Architecture News. IEEE Press, 2014.

[98] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: Improving resource efficiency at scale. In ISCA, 2015.

[99] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn, and
J. Devietti. LASER: Light, Accurate Sharing dEtection and Repair. In
High-Performance Computer Architecture (HPCA), 2016.

[100] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe
lsh: Efficient indexing for high-dimensional similarity search. In VLDB,
2007.

[101] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations. In MICRO, 2011.

[102] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD,
2000.

[103] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action,
Second Edition: Covers Apache Lucene 3.0. 2010.

[104] J. McNames. A fast nearest-neighbor algorithm based on a principal
axis search tree. TPAMI, 2001.

[105] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.
Power management of online data-intensive services. In ISCA, 2011.

[106] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2009.

[107] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high
dimensional data. TPAMI, 2014.

[108] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen. Microservice
Architecture: Aligning Principles, Practices, and Culture. 2016.

[109] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, and P. Saab. Scaling memcache at
facebook. In NSDI, 2013.

[110] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high
dimensional data: a review. KDD, 2004.

[111] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion.
Energy proportionality and workload consolidation for latency-critical
applications. In SoCC, 2015.

[112] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. CACM,
1990.

[113] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The a-tree: An
index structure for high-dimensional spaces using relative approximation.
In VLDB, 2000.

[114] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with
parameter-sensitive hashing. In ICCV, 2003.

[115] M. Slaney and M. Casey. Locality-sensitive hashing for finding nearest
neighbors. IEEE Signal Processing Magazine, 2008.

[116] A. Sriraman, S. Liu, S. Gunbay, S. Su, and T. F. Wenisch. Deconstructing
the Tail at Scale Effect Across Network Protocols. The Annual Workshop
on Duplicating, Deconstructing, and Debunking (WDDD), 2017.

[117] A. Sriraman and T. F. Wenisch. µTune: Auto-tuned Threading for OLDI
Microservices. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018.

[118] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. CoRR, 2015.

[119] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD, 2009.

[120] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and accurate nearest
neighbor and closest pair search in high-dimensional space. TODS, 2010.

[121] G. Tene. How not to measure latency. In Low Latency Summit, 2013.
[122] K. Terasawa and Y. Tanaka. Spherical lsh for approximate nearest

neighbor search on unit hypersphere. In WADS, 2007.
[123] D. Tsafrir. The context-switch overhead inflicted by hardware interrupts

(and the enigma of do-nothing loops). In ecs, 2007.
[124] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter

tcp (d2tcp). In SIGCOMM, 2012.
[125] B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar. Timetrader:

Exploiting latency tail to save datacenter energy for online search. In
MICRO, 2015.

[126] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil. Evaluating the monolithic and microservice architecture
pattern to deploy web applications in the cloud. In 10CCC, 2015.

[127] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, and S. Zhang. Bigdatabench: A big data benchmark suite from
internet services. In HPCA, 2014.

[128] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for well-
conditioned, scalable internet services. In SOSP, 2001.

[129] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes.
Cpi 2: Cpu performance isolation for shared compute clusters. In EuroSys,
2013.

[130] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill: Attributing the
source of tail latency through precise load testing and statistical inference.
In ISCA, 2016.

[131] H. Zhu and M. Erez. Dirigent: Enforcing qos for latency-critical tasks
on shared multicore systems. ACM SIGARCH Computer Architecture
News, 2016.

[132] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-cpu
cache compression. In ICDE, 2006.

